16 research outputs found

    The composition of the zebrafish intestinal microbial community varies across development

    Get PDF
    The assembly of resident microbial communities is an important event in animal development; however, the extent to which this process mirrors the developmental programs of host tissues is unknown. Here we surveyed the intestinal bacteria at key developmental time points in a sibling group of 135 individuals of a model vertebrate, the zebrafish (Danio rerio). Our survey revealed stage-specific signatures in the intestinal microbiota and extensive interindividual variation, even within the same developmental stage. Microbial community shifts were apparent during periods of constant diet and environmental conditions, as well as in concert with dietary and environmental change. Interindividual variation in the intestinal microbiota increased with age, as did the difference between the intestinal microbiota and microbes in the surrounding environment. Our results indicate that zebrafish intestinal microbiota assemble into distinct communities throughout development, and that these communities are increasingly different from the surrounding environment and from one another

    Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development

    Get PDF
    Despite their importance to host health and development, the communities of microorganisms associated with humans and other animals are characterized by a large degree of unexplained variation across individual hosts. The processes that drive such inter-individual variation are not well understood. To address this, we surveyed the microbial communities associated with the intestine of the zebrafish, Danio rerio, over developmental time. We compared our observations of community composition and distribution across hosts with that predicted by a neutral assembly model, which assumes that community assembly is driven solely by chance and dispersal. We found that as hosts develop from larvae to adults, the fit of the model to observed microbial distributions decreases, suggesting that the relative importance of non-neutral processes, such as microbe-microbe interactions, active dispersal, or selection by the host, increases as hosts mature. We also observed that taxa which depart in their distributions from the neutral prediction form ecologically distinct sub-groups, which are phylogenetically clustered with respect to the full metacommunity. These results demonstrate that neutral processes are sufficient to generate substantial variation in microbiota composition across individual hosts, and suggest that potentially unique or important taxa may be identified by their divergence from neutral distributions

    Effects of climate change on grassland biodiversity and productivity: the need for a diversity of models

    Get PDF
    There is increasing evidence that the impact of climate change on the productivity of grasslands will at least partly depend on their biodiversity. A high level of biodiversity may confer stability to grassland ecosystems against environmental change, but there are also direct effects of biodiversity on the quantity and quality of grassland productivity. To explain the manifold interactions, and to predict future climatic responses, models may be used. However, models designed for studying the interaction between biodiversity and productivity tend to be structurally different from models for studying the effects of climatic impacts. Here we review the literature on the impacts of climate change on biodiversity and productivity of grasslands. We first discuss the availability of data for model development. Then we analyse strengths and weaknesses of three types of model: ecological, process-based and integrated. We discuss the merits of this model diversity and the scope for merging different model types

    Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut

    Get PDF
    ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. IMPORTANCE The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their environment can be thoroughly sampled and they can be fed the same diet for their entire lives. We found that microbial communities in the gut changed as zebrafish aged under conditions of a constant diet and became increasingly different from microbial communities in their surrounding environment. Further, we observed that the amount of fat in the diet had distinct age-specific effects on gut community assembly. These results reveal the complex relationships between microbial communities residing in the intestine and those in the surrounding environment and show that these relationships are shaped by dietary fat throughout the life of animal hosts

    Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice

    Get PDF
    The radiation environment in deep space includes the galactic cosmic radiation with different proportions of all naturally occurring ions from protons to uranium. Most experimental animal studies for assessing the biological effects of charged particles have involved acute dose delivery for single ions and/or fractionated exposure protocols. Here, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice 2 months following rapidly delivered, sequential irradiation with protons (1 GeV, 60%), 16O (250 MeV/n, 20%), and 28Si (263 MeV/n, 20%) at 0, 25, 50, or 200 cGy at 4–6 months of age. Cortical BDNF, CD68, and MAP-2 levels were analyzed 3 months after irradiation or sham irradiation. During the dark period, male mice irradiated with 50 cGy showed higher activity levels in the home cage than sham-irradiated mice. Mice irradiated with 50 cGy also showed increased depressive behavior in the forced swim test. When cognitive performance was assessed, sham-irradiated mice of both sexes and mice irradiated with 25 cGy showed normal responses to object recognition and novel object exploration. However, object recognition was impaired in female and male mice irradiated with 50 or 200 cGy. For cortical levels of the neurotrophic factor BDNF and the marker of microglial activation CD68, there were sex × radiation interactions. In females, but not males, there were increased CD68 levels following irradiation. In males, but not females, there were reduced BDNF levels following irradiation. A significant positive correlation between BDNF and CD68 levels was observed, suggesting a role for activated microglia in the alterations in BDNF levels. Finally, sequential beam irradiation impacted the diversity and composition of the gut microbiome. These included dose-dependent impacts and alterations to the relative abundance of several gut genera, such as Butyricicoccus and Lachnospiraceae. Thus, exposure to rapidly delivered sequential proton, 16O ion, and 28Si ion irradiation significantly affects behavioral and cognitive performance, cortical levels of CD68 and BDNF in a sex-dependent fashion, and the gut microbiome

    Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development

    Full text link
    Economic development is marked by dramatic increases in the incidence of microbiome-associated diseases, such as autoimmune diseases and metabolic syndromes, but the lifestyle changes that drive alterations in the human microbiome are not known. We measured market integration as a proxy for economically related lifestyle attributes, such as ownership of specific market goods that index degree of market integration and components of traditional and nontraditional (more modern) house structure and infrastructure, and profiled the fecal microbiomes of 213 participants from a contiguous, indigenous Ecuadorian population. Despite relatively modest differences in lifestyle across the population, greater economic development correlated with significantly lower within-host diversity, higher between-host dissimilarity, and a decrease in the relative abundance of the bacterium Prevotella. These microbiome shifts were most strongly associated with more modern housing, followed by reduced ownership of traditional subsistence lifestyle-associated items

    Investigating the Role of Immunity and Other Selective Pressures on the Assembly of the Gut Microbiota in Zebrafish and Humans

    Get PDF
    Over the past few decades, it has become increasingly apparent that host-associated microbial communities play an integral role in the development, physiology, and health of their host organisms. All hosts have evolved mechanisms to filter the microbial taxa that comprise their resident intestinal microbial community, or gut microbiota. Utilizing the zebrafish as a model host organism, we documented the development of the gut microbiota through time, and found a significant shift in the composition of the gut microbiota after the onset of adaptive immunity. This led us to hypothesize that adaptive immunity is an important determinant of gut microbiota composition. We tested this hypothesis using wild type and rag1-/- zebrafish, which lack a functional adaptive immune system. Additionally we tested the robustness of the effects of adaptive immunity to dispersal of microbes between immune-compromised and immune-competent genotypes. We found that adaptive immunity had less of an effect on the composition of the gut microbiota than we expected, although there were intriguing differences in the nature of selection imposed when adaptive immunity was present than when it was absent. Because “westernization”, or market-integration, has been associated with significant changes in the human microbiota and certain health risks, we used similar analyses to those we applied to the zebrafish system to determine whether market-integration alters the filtering effects of inflammation and intestinal helminth parasites on the intestinal microbial community. We found that market-integration increased inter-subject dissimilarity and reduced inter-subject dispersal. Even small changes in the inflammation marker, CRP, were associated with differences in the gut microbiota, but these effects were reduced in the presence of helminth infection, which has been hypothesized to affect the microbiota by reducing inflammation. In total, this dissertation provides evidence for the nature and importance of host filters of the gut microbiota across two vertebrate species, as well as providing a framework for future studies of the effects of such filters on the assembly of the gut microbiota. This dissertation includes previously published, and unpublished, co-authored material

    Behavioral and Cognitive Performance Following Exposure to Second-Hand Smoke (SHS) from Tobacco Products Associated with Oxidative-Stress-Induced DNA Damage and Repair and Disruption of the Gut Microbiome

    No full text
    Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer’s disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury
    corecore