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DISSERTATION ABSTRACT 
 
Keaton Daniel Stagaman 
 
Doctor of Philosophy 
 
Department of Biology 
 
June 2016 
 
Title: Investigating the Role of Immunity and Other Selective Pressures on the Assembly 

of the Gut Microbiota in Zebrafish and Humans 
 
 

Over the past few decades, it has become increasingly apparent that host-

associated microbial communities play an integral role in the development, physiology, 

and health of their host organisms. All hosts have evolved mechanisms to filter the 

microbial taxa that comprise their resident intestinal microbial community, or gut 

microbiota. Utilizing the zebrafish as a model host organism, we documented the 

development of the gut microbiota through time, and found a significant shift in the 

composition of the gut microbiota after the onset of adaptive immunity.  

This led us to hypothesize that adaptive immunity is an important determinant of 

gut microbiota composition. We tested this hypothesis using wild type and rag1-/- 

zebrafish, which lack a functional adaptive immune system. Additionally we tested the 

robustness of the effects of adaptive immunity to dispersal of microbes between immune-

compromised and immune-competent genotypes. We found that adaptive immunity had 

less of an effect on the composition of the gut microbiota than we expected, although 

there were intriguing differences in the nature of selection imposed when adaptive 

immunity was present than when it was absent. 

 Because “westernization”, or market-integration, has been associated with 
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significant changes in the human microbiota and certain health risks, we used similar 

analyses to those we applied to the zebrafish system to determine whether market-

integration alters the filtering effects of inflammation and intestinal helminth parasites on 

the intestinal microbial community. We found that market-integration increased inter-

subject dissimilarity and reduced inter-subject dispersal. Even small changes in the 

inflammation marker, CRP, were associated with differences in the gut microbiota, but 

these effects were reduced in the presence of helminth infection, which has been 

hypothesized to affect the microbiota by reducing inflammation.  

In total, this dissertation provides evidence for the nature and importance of host 

filters of the gut microbiota across two vertebrate species, as well as providing a 

framework for future studies of the effects of such filters on the assembly of the gut 

microbiota. 

 This dissertation includes previously published, and unpublished, co-authored 

material.  
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CHAPTER I 

INTRODUCTION 

Life is dominated by microbes, in terms of both numbers and mass. As such, all 

eukaryotic life, as far as we know, lives in intimate association with various microbial 

species. In vertebrate animals, microbes inhabit nearly every surface of the body that 

makes contact with the outside world: the skin, genitals, mouth, and gastro-intestinal 

tract. Far from living as quiet neighbors, animals and their resident microbes interact 

constantly, creating what will from now on be referred to as the host-microbe system. 

Host-microbe systems are compelling topics of study for a wide array of disciplines. 

From the perspective of the host, we have learned that the host-associated microbial 

community, or microbiota, plays a surprisingly integral role in the proper development of 

tissues such as as the intestinal epithelium and both the adaptive and innate branches of 

the immune system (Bry et al., 1996; Rawls et al., 2004; Bates et al., 2006; Hooper et al., 

2012), demonstrating that host development and microbial interaction are inextricably 

linked. From the perspective of the microbial community, the host provides an 

environment unlike any other: one that can respond directly to the behavior of the 

microbes on both ecological and evolutionary time scales. Not only is there a much 

stronger interaction between a host and its associated microbial community than say, 

between soil and its associated microbial community, but because of the aforementioned 

contributions by the microbes to host development and physiology, the host has a vested 

interest in shaping the community of microbes that it harbors. As such, hosts have 

evolved mechanisms for filtering their microbiota to select for species, functions, or 

behaviors that provide benefits, or prevent harm, to the host.  
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This dissertation focuses on a particular set of these host filters and how they 

interact to shape the host-associated intestinal microbial community. The next chapter, 

published originally in Science, provides a more in depth background on the importance 

of using well-established ecological theory to understand the assembly of host-associated 

microbial community rather than simply a host-pathogen paradigm. It is this framework, 

the ecology of host-associated microbial communities, that I apply to the experimental 

design and analysis in the subsequent chapters. Chapter III, originally published in ISME 

J, reports foundational studies that establish the zebrafish as a model for studying host-

microbe system development and provides evidence that the zebrafish host does play a 

role in filtering its microbiota. Because there are almost innumerable ways in which hosts 

can filter their gut microbiota, by necessity this dissertation focuses on just a few host 

factors that were predicted to have strong, relevant effects. Chapters IV and V, both 

unpublished and coauthored, provide evidence for how these specific host factors—

adaptive immunity, inflammation, helminth infection, and market-integration—contribute 

to host filtering of the gut microbiota in both zebrafish and human subjects. The results 

from this body of work will contribute to a growing literature that seeks to provide a 

comprehensive understanding of the assembly and maintenance of host-associated 

microbial communities. 
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CHAPTER II 

THE APPLICATION OF ECOLOGICAL THEORY TOWARDS AN 

 UNDERSTANDING OF THE HUMAN MICROBIOME 

From Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. 
(2012). The Application of Ecological Theory Toward an Understanding of the Human 
Microbiome. Science 336: 1255–1262. 

 
Each human is an assemblage composed not only of somatic cells but also of 

many symbiotic species. The abundant and diverse microbial members of the assemblage 

play critical roles in the maintenance of human health by liberating nutrients and/or 

energy from otherwise inaccessible dietary substrates, promoting differentiation of host 

tissues, stimulating the immune system, and protecting the host from invasion by 

pathogens. A number of clinical disorders are associated with alterations in host-

associated microbial communities (the ‘microbiota’), including obesity, malnutrition, and 

a variety of inflammatory diseases of the skin, mouth, and intestinal tract. Thus, the 

human body can be viewed as an ecosystem, and human health as a product of ecosystem 

services delivered in part, by the microbiota. 

There is growing interest in the use of theoretical methods to study microbial 

community ecology, and in particular, host-associated microbiota (Mihaljevic, 2012; 

Prosser et al., 2007). Recent discoveries of unexpected variation in the composition of the 

microbiome of healthy individuals (Palmer et al., 2007; Ravel et al., 2011; Wu et al., 

2011) highlight the importance of identifying the processes that could possibly give rise 

to such variation. Ecological theory seeks to explain and predict observable phenomena, 

such as temporal and spatial patterns of diversity.  
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Here, we explore how community assembly theory could be used to understand 

the human-associated microbiota and its role in health and disease. We focus on three 

scenarios relevant to the assembly of the human microbiome: assembly in previously 

unoccupied habitats (e.g., postnatal development), reassembly following disturbance 

(e.g., following antibiotic treatment), and assembly in the context of invasion (e.g., by a 

pathogen). 

 

Ecological processes within humans 

The essential building blocks of community assembly theory encompass the 

processes that create and shape diversity in local assemblages: dispersal, in situ 

diversification, environmental selection, and ecological drift (Vellend, 2010) (Figure 1). 

In addition, coevolution provides another lens through which to view the human-

microbial ecosystem (Dethlefsen et al., 2007), although in this review we focus on 

shorter-term dynamics at the level of individual hosts.  
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Figure 1. Alternative community assembly scenarios could give rise to the compositional variations observed in the human microbiota. 
Each panel shows the assembly of local communities in different habitat types from a pool of available species. In A-C, each local community has 
access to all available colonists, but the order of invasion varies. In A, local species composition is determined primarily by environmental selection: 
regardless of invasion order, habitats with initially similar conditions select for similar assemblages. In B, the opposite is true: regardless of initial 
habitat conditions, historical contingencies (i.e., differences in the timing and order of species invasions) determine assemblage composition. In C, 
neither habitat nor history matter: local communities assemble via random draws from the species pool. In D, dispersal barriers result in local 
communities that assemble from different species pools. For each of the pools, local communities may assemble as in A, B, or C. The meaning of 
three different diversity measures is shown in Panel A: gamma diversity refers to the “regional” species pool, i.e., the total diversity of the local 
communities connected via dispersal; beta diversity refers to the differences between local communities (species turnover); and alpha diversity refers 
to the diversity within a local community. Although multiple scenarios are likely to apply to any real-world setting, one may dominate. For example, 
differences between body habitats may be best explained by environmental selection (A), differences between siblings for the same habitat may be 
best explained by historical contingency (B), differences between monozygotic twins prior to weaning highlight the role of stochasticity (C), and 
differences between infants born by Cesarean section versus vaginal delivery are likely to be explained by dispersal limitation. Adapted from Chase 
(14) and Fukami (15).

NOTE TO ART EDITORS: In this figure, circles representing local communities could be changed to human forms (outlines).
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Figure 1. Community ecological processes underpinning the formation of human 
microbiotas. “Species” (strains, genotypes, or other focal entities) are added via dispersal 
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and local diversification, and relative abundances are shaped over time by ecological 
selection, drift, and ongoing dispersal. The figure illustrates a single individual at three 
separate time points. Circles represent “local” communities, and process examples are 
shown as follows: Species 2 disperses to the skin surface from an external source (e.g., 
another individual) and then outcompetes species 3, which goes locally extinct. Species 7 
disperses to the urogenital tract from an internal source (the gut) and then recombines 
(exchanges genes) with species 12 via HGT giving rise to a new genotype (127). In the 
oral cavity, species 5 increases in abundance but is partially removed by oral hygiene, 
which returns the community to a more even composition. Species 10 drifts to local 
extinction in the gut, but is rescued by dispersal from an external source. Species 13, 14, 
and 15 arrive but are excluded by host or community-level filters. 
 

Dispersal, or the movement of organisms across space, is a fundamental process 

by which diversity accumulates in local microbial communities. Dispersal tends to 

emphasize a view of the human body as an “island”, a patch of habitat that is continually 

sampling the pool of available colonists. The list of available colonists may be influenced 

by microbial traits—those affecting dispersal efficiency, transmission routes, and “ex-

host” survivability—and by patterns of host contact and carriage, among other factors. 

The concept put forth in the late nineteenth and early twentieth centuries that ‘everything 

is everywhere, but the environment selects’ had a powerful impact on thinking about 

community assembly (O’Malley, 2007), but a more recent appreciation of other 

ecological processes (such as local microbial species diversification) suggests that this 

conceptualization was overly simplistic. Controlling infectious disease transmission 

depends on accurate models of host-to-host microbial dispersal (Koopman, 2004), and 

these could guide investigations into the dissemination of the human microbiome. 

Selection favors efficient dispersal in pathogens, but perhaps less so among beneficial 

bacteria, because the host is harmed by the first and not by the second; for beneficial 

microbes, transmission routes such as direct or close contact may be more important. 
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Notably, the density and spatial arrangement of host habitat patches has been highly 

dynamic throughout human history.  

A second process operating in microbial communities is local diversification. 

Unlike in most plant and animal communities, this process can take place over short 

ecological time-scales for microbes. Large microbial population sizes, high growth rates, 

and strong selective regimes, all of which can be found in the human body, facilitate 

rapid microbial adaptation via mutation or recombination. Recombination via horizontal 

gene transfer may be especially common among members of the human microbiota, 

especially those sharing the same ecological niche (e.g., body site) (Smillie et al., 2011). 

Microbial diversification may also be driven by interactions with phage in the human 

body. Dispersal and diversification may interact (Urban et al., 2008); for example, 

immigration may suppress adaptive radiations (Fukami et al., 2007). 

Relative abundances in local communities are shaped over time by a third 

process, environmental selection. When considering environmental selection, or niche-

based interactions, the human body can be viewed in two ways. First, it can be viewed as 

a “habitat filter”, a collection of resources and conditions allowing the growth of some 

microbes, but not others, emphasizing the selection of microbial traits that permit survival 

and growth in the host. In this view, the host shapes the microbiota, but not the other way 

around. Body temperature is an example of such filtering, since microbes alter body 

temperature (causing fever) only when they transgress host anatomic boundaries. Second, 

the human body and its symbionts may be viewed as a community of interacting cells. 

This view differs from the habitat filter view in that it assumes strong feedbacks between 

hosts and microbes, and among microbes. This view assumes that the host shapes the 
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microbiota, and vice versa. Interactions between the host immune system and the 

microbiota might be best represented by this view (Hooper et al., 2012). Importantly, the 

overall patterns that arise from dispersal and environmental selection (ecological 

interactions) can vary as a function of the spatial scale over which these processes occur 

(Kerr et al., 2002). 

In addition to selection-driven changes, species abundances may fluctuate due to 

the fourth ecological process, known as ecological drift, or demographic stochasticity. As 

a result of this process, low-abundance species (e.g., recent immigrants, antibiotic 

sensitive strains, or strains occupying niches with low carrying capacity) are more likely 

to proceed towards local extinction and become lost from the system, unless they have 

(or can gain) a competitive advantage, can access a different niche, or become 

replenished by dispersal from outside the community. Thus, dispersal can effectively 

“rescue” species from the brink of local extinction, or thereafter.  

Finally, the human habitat can be understood as a host-symbiont “holobiont”, and 

as such, an ecological system under selection to minimize conflict between individual 

members. This view emphasizes the dominant role of co-evolution in the assembly and 

dynamics of the human ecosystem and reminds us that long- and short-term selective 

pressures on the human microbiota are not necessarily aligned. Any mutualistic trait that 

imposes a cost on the microbes that express it – such as producing dedicated molecules to 

interfere with pathogens or modulate host immune activity – represents a trade-off 

between the immediate selection against that cost and the long-term selection in favor of 

mutualism (Dethlefsen et al., 2007).  
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In summary, different views of humans as microbial habitats make different 

assumptions about the processes most important to the assembly and dynamics of human 

microbiome. Community assembly can be conceptualized as being niche-based, 

dispersal-limited, historically contingent, or random, depending on the relative 

contributions of habitat conditions, colonist availability, arrival order (and timing), or 

chance-driven events, respectively, in shaping observed patterns (Figure 2). 

Metacommunity theory integrates the four processes described above and provides a 

useful framework for considering the community assembly in the human body (Vellend, 

2010). 

 

Figure 2. Alternative community assembly scenarios could give rise to the 
compositional variations observed in the human microbiota. Microbial species are 
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represented by numbers surrounded by dashed boxes. In A, C, and D, six local 
communities sample species from a single pool of available colonists. In A, local species 
composition is driven primarily by environmental selection: regardless of invasion order, 
habitats with initially similar conditions select for similar assemblages. In C, the opposite 
is true: regardless of initial habitat conditions, historical contingencies (i.e., differences in 
the timing and order of species invasions) determine assemblage composition (usually 
attributed to priority effects). In D, neither habitat nor history matter: local communities 
assemble via random draws from the species pool (here, like rolling a 12-sided die 
because all species occur at the same frequency). In B, dispersal barriers cause local 
communities to assemble from different species pools. For each of the two pools, local 
communities may assemble as in A, C, or D. Panel A (arbitrarily chosen) illustrates 
various diversity measures: gamma diversity refers to that of the “regional” species pool, 
i.e., the total diversity of the local communities potentially connected via dispersal; beta 
diversity refers to the amount of diversity shared between local communities; and alpha 
diversity refers to the amount of diversity found within a local community. Panel B 
demonstrates the relationship between low gamma diversity (the species pool containing 
only two species, 2 and 3) and low alpha and beta diversity. Although it’s likely all four 
scenarios (A-D) play a role in generating microbiome variation, suggested examples 
highlight where each might predominate. 
 

Metacommunity theory and the human microbiome 

One of the key theoretical frameworks used in studies of community assembly is 

neutral theory (Hubbell, 2001) in which it is assumed that dispersal, diversification, and 

ecological drift are purely chance-driven processes. It is a null model because it invokes 

neither environmental selection nor inherent differences in species’ ability to disperse or 

diversify. Although neutral theory on its own is quite valuable in testing this null 

hypothesis, an ideal model for the assembly of the human microbiome might 

accommodate it with alternative theories, combining the strengths of transmission 

dynamic models (e.g., inclusion of host contact and carriage dynamics) with those from 

island biogeography and community ecology (e.g., focus on communities, rather than 

individual pathogens). One such approach is metacommunity theory (Leibold et al., 

2004), which could be especially useful for modeling host-associated communities.  
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Metacommunity theory views the world as a collection of patches, or spatially 

distinct areas of suitable habitat surrounded by a matrix of unsuitable habitat. These 

patches each contain a community of organisms, and these spatially distinct communities 

are connected together to form a metacommunity by the dispersal of organisms from 

patch to patch. Human populations can be viewed likewise, with host-to-host dispersal 

linking microbial communities. Metacommunity theory is especially helpful for 

understanding the relative importance of dispersal and environmental selection in shaping 

host-associated communities (Mihaljevic, 2012), two issues that have received relatively 

little attention in studies of the human microbiome.  

The predictions of metacommunity theory depend on the frequency and extent of 

dispersal, differences in the traits of individual organisms, and the degree to which 

patches vary in their environmental conditions (Leibold et al., 2004; Ellis et al., 2006). 

Dispersal can be infrequent and localized, or widespread and frequent, as discussed 

above. In some metacommunity models, patches are assumed to be essentially identical, 

and that movement among patches determines variation in community membership. Such 

models might be especially appropriate for populations of closely related hosts. Other 

models assume that patches vary strongly in their available niches, and that variation in 

community membership results at least in part from environmental selection (e.g., 

underpinned by host genetics or diet).  

Metacommunity theory enables one to predict the conditions under which 

community dynamics within a patch are driven by immigration from outside versus local 

adaptation. In the human microbiome, low dispersal rates favor adaptation within a patch 

and high dispersal favors immigration. This concept could be useful, for example, in 
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understanding responses to antibiotic use. If acquisition of antibiotic resistance were 

primarily a result of immigration, then interventions focused on quarantine and hygiene 

would be more effective than those focused on altering antibiotic duration or dose (see 

“An ecological approach to managing invasions” below). 

While metacommunity theory has been used to elucidate the drivers of non-host 

associated microbial community membership and dynamics (Logue et al., 2011; Ofiteru 

et al., 2010; Van der Gucht et al., 2007), it has rarely been used to study host-associated 

communities (Hovatter et al., 2011; Sloan et al., 2006), e.g.,, to explore the stringency of 

host selection and its dependence on the microbial group or the age of the host. 

Ultimately this information will result in a better understanding of how microbes are 

“filtered” by the host and, conversely, how microbes evade this filtering. This 

information is crucial if clinicians are to directly manipulate host-associated 

communities, through, for example, the design of probiotics capable of evading host 

filtering and establishing within a host.  

The effective application of metacommunity theory (and assembly theory, in 

general) to the human microbiome requires a preliminary understanding of how the 

microbiome varies across hosts and over time. In the subsequent discussion, we review 

our current understanding of this variation, focusing on the dynamics of communities in 

newly created habitats (e.g., neonatal colonization), the dynamics following disturbance 

(e.g., after antibiotic treatment) and that following invasion (e.g., by a pathogen). We 

chose these scenarios because they represent and reveal the fundamental types of 

assembly relevant to human health. 
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Postnatal acquisition and development of the human microbiome 

Babies are born essentially sterile, and acquire their microbiome from their 

surroundings. The postnatal assembly of the human microbiota plays an important role in 

infant health, providing resistance to pathogen invasion, immune stimulation, and other 

important developmental cues early in life (Mackie et al., 1999b). Acute and chronic 

disorders, such as necrotizing enterocolitis, antibiotic-associated diarrhea, malnutrition, 

inflammatory bowel disease, and asthma have been linked to inadequate, inappropriate, 

or disrupted postnatal microbiome acquisition and development (Murgas Torrazza and 

Neu, 2011). Mechanisms controlling the appearance of bacteria in healthy infants have 

been studied for well over a century (Escherich, 1988), and many have likened 

microbiome development to ecological succession (Mackie et al., 1999b; Savage, 1977; 

Schaedler, 1965). Succession, as a mode of community assembly, has largely emphasized 

deterministic processes, being described often as orderly and predictable, but the 

importance of stochastic and/or historical events has also long been recognized. 

In the absence of microbial invasion of the amniotic cavity, which is thought to be 

a rare, pathologic condition, rupture of membranes signals the moment when microbes, 

most likely of maternal vaginal origin, first gain access to the neonate. Vaginally 

delivered infants clearly receive a strong input of vaginal, and possibly other urogenital 

or fecal microbiota as they pass through and exit the birth canal (Dominguez-Bello et al., 

2010; Mändar and Mikelsaar, 1996). Vaginal microbiome composition in non-pregnant, 

reproductive age women is highly dynamic, and is characterized by at least five 

compositional classes delineated by different, dominant Lactobacillus species, or a lack 

of Lactobacillus dominance. There is frequent class switching over time, including to and 
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from compositions indicative of bacterial vaginosis, even in the absence of symptoms 

(Ravel et al., 2011; Brotman et al., 2010; Gajer et al., 2012). Whether these dynamics 

occur similarly in pregnant and postpartum women has important implications for the 

initial colonization of vaginally delivered infants; if they do, infant-to-infant variation in 

the composition of initial colonists may be imposed in some cases by maternal vaginal 

microbiome class at the time of delivery. Likewise, maternal gut microbiome types (Wu 

et al., 2011; Arumugam et al., 2011) may also determine the pool of colonists available 

to vaginally-delivered infants at birth. Thus, variation among neonate microbiomes may 

reflect variation in maternal microbiomes, but this has not been widely tested for 

maternal habitats other than the vagina. At the time of delivery, microbiomes do not 

differ consistently among infant body sites (Dominguez-Bello et al., 2010), implying that 

sampling is driving initial community assembly, with minimal filtering by the infant host. 

Delivery mode also determines microbial exposure at the time of birth. For 

example, infants delivered by cesarean section do not receive contributions from the 

vaginal microbiota, and instead, are exposed initially to what appears to be ambient skin 

microbiota (Dominguez-Bello et al., 2010). Incidental exposures to maternal (or other) 

gut or vaginal microbiota may occur later in cesarean section infants, at low density or 

low frequency, and may be inadequate for outcompeting already established strains. For 

example, cesarean section infants display reduced abundances and/or incidences of 

colonization by the genera Bacteroides and Bifidobacterium early in development relative 

to vaginal deliveries (Bennet and Nord, 1987; Penders et al., 2006). Delivery mode 

effects can persist for months, and may have consequences for infant health; cesarean 

section infants have a higher risk for some immune-mediated diseases (Decker et al., 
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2010; Kuitunen et al., 2009; van Nimwegen et al., 2011). The ambient environment may 

also play a role in colonization at delivery; infants delivered at home versus the hospital 

were colonized differently at 1 month of age (Penders et al., 2006). Thus, dispersal 

limitation imposed by certain medical interventions may contribute to inter-individual 

variation early in life.  

Over the first few months – roughly up until the first solid foods are introduced – 

a fairly well constrained range of stereotypical bacteria appear in the feces (distal gut), 

alpha diversity (species richness and evenness within communities) generally increases, 

and aerobes are thought to be supplanted by facultative and then strict anaerobes (Mackie 

et al., 1999b). Exclusive breast-feeding has been associated with selection for increased 

abundance of particular Bifidobacterium species whose genome sequences reflect 

specialized use of human milk oligosaccharides and similar host-derived substrates (Sela 

et al., 2008), or for other bacteria such as Bacteroides that could compete for the same 

ecological niche (Marcobal et al., 2010). Strikingly, during this early phase, microbiota 

composition is highly dynamic within and between infants (Palmer et al., 2007; Mackie 

et al., 1999b; Favier et al., 2002; Koenig et al., 2011; Trosvik et al., 2009), with temporal 

variation characterized by periods of relative stability (for varying lengths of time) 

punctuated by abrupt shifts in composition and structure. In some cases, these shifts can 

be linked with life events that likely impose environmental selection such as fever, 

formula feeding, or antibiotic therapy (Palmer et al., 2007; Koenig et al., 2011; Savino et 

al., 2011). Extraordinarily parallel transitions observed in a pair of dizygotic twins 

suggest that exposures (shared exposures in their case) can also play an important role 

during this phase, driving within and between infant variation (Palmer et al., 2007). This 
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finding emphasizes the need to better understand how infants sample their environment 

over time, e.g., whether outside-of-host environmental reservoirs or direct host exchange 

paradigms prevail, and with regard to the frequency and extent of dispersal (as discussed 

above). Abrupt shifts might reflect opportunistic invasions by better-adapted species or 

subtle filtering by the host. An infant’s unique developmental path through this early 

unstable phase may have longer-term health implications. For example, recent work has 

shown that colonization during the neonatal period has a particularly important effect on 

mucosal immune development (Inman et al., 2012; Olszak et al., 2012). 

 The introduction of solid foods and weaning are associated with the onset of a 

transition towards an adult-like gut microbiome. Differences due to early exposures such 

as delivery mode fade as microbiota compositions become more canalized. Life events 

like illness, diet modification, and antibiotic therapy can still impose disturbances, 

although specific compositions appear to recover. Taxa characteristic of the adult 

eventually establish, but the process of microbial community assembly appears to extend 

past the first year of life and into childhood (Palmer et al., 2007; Koenig et al., 2011). If 

there is an imprint of microbial flow from parents to children, it is either difficult to 

detect at early ages and/or else emerges gradually later in life. In one study, fecal patterns 

of bacterial taxonomic diversity in one year olds were not found to be significantly more 

similar to those of their parents than to those of unrelated adults (Palmer et al., 2007); but 

in another study, patterns of microbial diversity in adult twins were slightly more similar 

to those of their mother (Turnbaugh et al., 2009). These findings suggest that we acquire 

microbes from competing sources other than, or in addition to, our family members. 

Further, there may be strong selection for an individualized microbiota. Describing the 



 

 

 

16 

adult state as “stable” may not suffice when stability is defined as the permanent 

coexistence of locally occurring species (Fukami and Nakajima, 2011), because even 

adult gut composition appears to change slightly over time (Caporaso et al., 2011). In 

summary, microbiome assembly in newly created habitats likely involves a gradual shift 

from conditions under the strong influence of dispersal limitation, and stochastic, and/or 

historical factors, towards conditions increasingly influenced by environmental selection 

by factors such as diet, with weaning as a strong catalyst, and with development towards 

adult-like composition continuing into childhood.  

 

Community assembly following disturbance: antibiotics as a paradigm 

The assembly of human-associated microbial communities does not, in general, 

proceed smoothly to a stable climax state which then resists further changes in 

composition. Disturbances often remove or kill some fraction of the community, 

providing an opportunity for remaining community members or new colonists to increase 

in abundance. For example, personal oral hygiene removes bacterial biofilm from teeth, 

and an antibiotic affects not only the targeted pathogen but also members of the normal 

microbiota. The former case represents a deliberate attempt to interrupt the development 

of microbial communities that might be associated with periodontitis, the latter case, an 

inadvertent consequence of modern medicine. In addition to causing a shift in the 

community (or state variable), disturbance may also involve a shift in habitat parameters, 

such as host diet. In many cases, a crucial unknown is resilience – that is, the degree to 

which the post-disturbance community returns to its former state. While most work on 

community resilience has considered resilience in terms of community taxonomic 
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composition, assessment of community function and ecosystem services may be even 

more important. 

The effect of antibiotics on the gut microbiota serves as a paradigm for 

disturbances in human-associated communities. Antibiotics are now one of the most 

common and important forms of disturbance of the human microbiota; on any given day, 

approximately 1-3% of people in the developed world are exposed to pharmacologic 

doses of antibiotics (Goossens et al., 2005). Over the past several decades there has been 

increasing concern about the spread of antibiotic resistance among pathogens, as well as 

growing concern that antibiotic use may disrupt the host-microbe interactions that 

contribute to human health. 

Antibiotic therapy is meant to achieve a sufficient concentration of the drug for a 

sufficient duration in a particular body site so that the targeted pathogen is eliminated. 

Even if this aim were always attained, the antibiotic will be found at a range of 

concentrations at many locations in the body, depending on the mode of administration 

and its pharmacodynamic properties. Where members of the indigenous microbiota are 

exposed to antibiotics that affect their growth without killing them, there is selection for 

resistance. Human gut and oral communities are recognized as reservoirs for the 

evolution and horizontal transfer of antibiotic resistance determinants, including to 

pathogens (Smillie et al., 2011; Roberts and Mullany, 2014; Salyers et al., 2004). 

However, antibiotic resistance among the microbiota is one of several mechanisms that 

may act to enhance the resilience of the indigenous communities, hence preserving their 

beneficial ecosystem services. Others may include population-level resistance via stress-
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response signaling (Lee et al., 2010), and the existence of dormant persister cells (Vega 

et al., 2012) or refugium-like locations (e.g., mucus layer). 

Only a handful of studies have employed cultivation-independent surveys to 

examine the consequences of therapeutic doses of antibiotics on the human gut 

microbiota (Dethlefsen et al., 2008; Dethlefsen and Relman, 2011; Donskey et al., 2003; 

Jakobsson et al., 2010; Jernberg et al., 2007; Young and Schmidt, 2004). While these 

studies have examined different antibiotics and employed a range of sampling strategies, 

durations and analytical approaches, they all have found that antibiotic treatment alters 

the composition of the gut microbiota, and that the abundance of most taxa begins to 

return to prior levels within several weeks. However, the studies are also consistent in 

showing that various taxa recovered to different extents, and that some do not recover 

over the duration of the study. The antibiotic effect is greater than the routine temporal 

variability of community composition (Dethlefsen et al., 2008; Dethlefsen and Relman, 

2011; Donskey et al., 2003; Jernberg et al., 2007). Some studies have revealed that the 

composition of strains within a taxon is sometimes altered, even if the overall relative 

abundance of taxon members returns to pre-antibiotic levels. In both of the studies that 

involved measurements of the prevalence of antibiotic resistant strains, elevated levels of 

resistance persisted to the end of the study (Jakobsson et al., 2010; Jernberg et al., 2007).  

Overall, research suggests that the human gut microbiota of generally healthy 

adults is largely, but not entirely, resilient to short courses of antibiotic therapy, while 

clinical evidence indicates that extended or repeated courses are more likely to result in 

serious complications such as the invasion and bloom of Clostridium difficile (Owens et 

al., 2008). Perhaps over short courses of antibiotics, a sufficient, although possibly quite 
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small number of residual cells from most of the large, pre-existing populations survives 

to recolonize the gut. An increasing number of these residual cells may be lost with 

longer or repeated courses of antibiotics. Thus, reassembly of the microbial community 

following extended antibiotic treatment may require colonization from outside the host, a 

process that would likely be more variable and require a longer period of time than 

reassembly via the filtering of existing populations in the host. In addition, the 

microbiome may be highly vulnerable to invasion by, or blooms by pathogens during 

recovery after disturbance, because resources are in high abundance and resident 

populations are low. The longer recovery time required following extended antibiotic 

treatment could lead to a higher probability of invasion by pathogenic strains. One can 

envision a more enlightened strategy for clinical use of antibiotics that includes pre-

treatment estimates of a patient’s microbial community resilience, e.g., based on the use 

of a standardized disturbance and monitoring of key community products, mapping of the 

ecological adaptive landscape, and assessment of the likelihood for community 

displacement and adoption of a disadvantageous, altered state. Assessments of elevated 

risk, or of loss of resilience might then prompt efforts at restoration (Lemon et al., 2012). 

Little is known regarding the response of the microbiome to frequent antibiotic 

use. When disturbances take place of greater magnitude or frequency than that to which a 

community has had an opportunity to adapt, ecological surprises may occur (Paine et al., 

1998). Such frequent disturbances may allow the persistence of microbial taxa that are 

inferior competitors within a given host, but that are maintained across hosts because they 

have traits that result in widespread and frequent dispersal, i.e., “fugitive” taxa. Such a 
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scenario is analogous to the patch dynamics paradigm of metacommunity theory (Leibold 

et al., 2004).  

 

Assembly of the human microbiome in the context of invaders (pathogens) 

It is naïve to consider only the interactions between host and pathogen when 

predicting the likelihood of microbial disease. The latter, for our purposes, is defined as 

infection of, and proliferation within a host by a species that, in so doing, elicits some 

sort of pathology. It may be useful to view the pathogen as an invasive species, and the 

consequences of invasion as a special case of community assembly. Like invasive species 

in more traditionally studied settings, whether a species can invade a particular 

community depends largely on niche opportunities: the filters imposed by the abiotic 

environment and the resistance of the community to colonization by an exotic species 

(Shea and Chesson, 2002). A successful invasion involves the dispersal of an invader to a 

new community, initial colonization, and proliferation, steps influenced by the same 

processes as community assembly more generally. 

The environment created by the host determines the number of potential niche 

opportunities. The nature of this environment is influenced by a number of conditions, 

including “abiotic” factors such as oxygen levels, pH, and temperature, as well as the 

abundance and types of available resources, such as composition of the host’s diet 

(Turnbaugh et al., 2006) and carbon sources provided directly by the host, such as 

mucosal poly- and oligosaccharides (Sonnenburg et al., 2004). In addition, the host 

immune system acts as an important environmental filter to limit the spatial extent of the 

microbiota’s available niches. The main functions of the mucosal immune system are to 
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create an inhospitable buffer zone between the microbiota and the host epithelium, and to 

minimize the incidence of systemic inflammation that would normally be induced in the 

face of so many bacterial products (Duerkop et al., 2009; Macpherson et al., 2012; 

Hooper et al., 2012). The immune system performs these functions through three general 

mechanisms: i) physical barriers such as the inner mucus layer of the colon and stomach, 

which is generally impenetrable to bacterial cells (Johansson et al., 2008); ii) 

antimicrobial peptides and mucosal antibodies in the mucus layer that further hinder 

bacterial colonization of the epithelium (Duerkop et al., 2009); and iii) innate and 

adaptive immune responses within the regional lymphatic tissues (Macpherson et al., 

2012). Inflammation is an important disturbance that alters the host-associated 

environment. These three mechanisms, in most healthy hosts, select for bacterial species 

that do well at or near mucosal surfaces or strong barriers such as the skin. However, host 

filtering is not the only factor influencing the ability of pathogens to invade the host-

microbiota community. 

One of the most important roles of the microbiota in mediating host-pathogen 

interactions is protection of the host from pathogen invasion, or ‘colonization resistance’ 

(Macpherson et al., 2012; Sekirov and Finlay, 2009). Protection is achieved through 

induction of the innate and adaptive branches of the immune system, creating an 

environment that is unfavorable to pathogens (illustrated by the observation that axenic 

mice (Macpherson and Harris, 2004) and zebrafish (Kanther and Rawls, 2010) have 

diminished immune responses and impaired barriers to infection), and through direct 

competition (or filtering – e.g., by lowering vaginal pH). In this case, pathogens are kept 

at bay by competition with the microbiota for space and resources. This protective effect 
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is demonstrated by the increased susceptibility to infection of hosts that have had their 

microbiota altered by antibiotics, a phenomenon well documented by Miller and 

Bohnhoff in the early 1960s with Salmonella invasion of mice pretreated with antibiotics 

(Bohnhoff and Miller, 1962). The ability of certain anaerobes to limit the invasion and 

growth of Clostridium perfringens in a diet-dependent manner is an example of 

competition for resources (Yurdusev et al., 1989). Bifidobacterium breve produces an 

exopolysaccharide (EPS) that protects it from the immune response; this allows it to 

compete for space and colonize the mouse gut at high loads in both the lumen and at the 

epithelial surface without inducing inflammation (Fanning et al., 2012). Even if invaders 

do gain a foothold, the indigenous microbiota can block lethality: in mice, some B. 

longum strains can protect against enterohemorrhagic E. coli-mediated death by 

inhibiting translocation of Shiga toxin from lumen to blood (Fukuda et al., 2011).  

 By viewing pathogens as invasive species we see that the contexts in which they 

are able to cause disease are the same as those required for any other species that invades 

and proliferates in a community. Niche opportunities can result from exploiting novel or 

overly abundant resources (from the host’s food), out-competing a commensal species for 

the same resource, or perhaps most importantly, exploiting niches left open after a 

disturbance. The importance of exploiting disturbance is well illustrated by the increasing 

number of cases of disease caused by Clostridium difficile (Kelly and LaMont, 2008). C. 

difficile is a “weedy”, both native and exotic species that can rapidly fill niches once they 

are vacant, but in most cases is eventually removed or kept at low numbers in the absence 

of a disturbance. Salmonella enterica serovar Typhimurium is an example of an exotic 

invasive that exploits disturbance, but in this case, it also causes the disturbance it 
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exploits. S. Typhimurium expresses many virulence factors that create inflammation in 

the mammalian intestine. A mutant S. Typhimurium strain lacking these virulence factors 

is unable to invade the gut community and cause disease; however, if inflammation is 

provided by some other mechanism, otherwise avirulent strains are able to invade the 

host communities (Stecher et al., 2007). Inflammation likely reduces the abundances of 

other bacteria that would compete with pro-inflammatory pathogens for space. As one 

possible mechanism, inflammation causes the intestine to produce tetrathionate which S. 

Typhimurium utilizes as an electron acceptor for respiring ethanolamine, a carbon source 

that cannot be exploited by other bacteria, thus avoiding competition for nutrients 

(Thiennimitr et al., 2011). By causing acute inflammation, the pathogen is able to alter 

the native microbiota and effectively colonize and proliferate. 

In contrast to the above examples, a reduction in disturbance frequency can also 

promote invasion by pathogens, as evident in cases of cystic fibrosis. Patients with cystic 

fibrosis produce thickened mucus, which inhibits the ability of the cilia to remove foreign 

material from normally sterile lung airways. This lack of constant removal (i.e., impaired 

innate immune host filtering mechanism), among other factors, allows for the 

establishment of bacterial communities that would normally not be able to persist at that 

site (Klepac-Ceraj et al., 2010). 

In summary, predicting the success and outcome of infection by pathogens can be 

aided by framing the issue as an ecological problem of community assembly. Invasion 

ecology highlights the importance of niche opportunities as determinants of success of 

invasion, and the manipulation of which might help in pathogen control and disease 

prevention. Experimental models using gnotobiotic organisms such as mice and zebrafish 
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will be helpful in understanding the role of community diversity, as well as the role of 

particular community members in conferring colonization resistance through indirect 

inhibition and resource competition. In addition, the frequency and magnitude of 

disturbance plays a crucial role in facilitating both the colonization by exotic invasives as 

well as the expansion of native species. Finding ways, through prebiotics, probiotics, or 

pharmabiotics, to alter pathogen or other bacterial species abundances (or to inhibit their 

detrimental effects on the host) in a specific manner without causing additional 

disturbance to the community will be very important for preventing and treating disease 

caused by invasive species. 

 

Translating ecological understanding into clinical practice 

An improved understanding, informed by ecological theory, of how microbiomes 

assemble could alter clinical practice by changing the perspective clinicians bring to the 

treatment of infectious disease. The traditional perspective has been to think of the human 

body as a battleground, on which physicians attack pathogens with increasing force, 

occasionally having to resort to a scorched earth approach to rid a body of disease. 

Although this perspective has been very successful for several diseases, it has come at a 

great cost. Even for those diseases for which it has worked, the collateral damage can be 

severe. As we have discussed, antibiotics often kill beyond the target organisms 

(Dethlefsen and Relman, 2011) and can increase the chance of invasion by unwanted 

organisms (such as C. difficile (Kelly and LaMont, 2008)).  

The body-as-battleground approach ignores the community context of infectious 

disease, and does not take into account our increasing knowledge regarding the assembly 
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of the human microbiome. We suggest that it is time for clinicians to abandon the war 

metaphor (Lederberg, 2000). Given the ecological parallels between assembly of the 

human microbiome and assembly of other ecological communities, we suggest that 

human medicine has more in common with park management, than it does with 

battlefield strategy. To effectively manage a plant or animal community requires a 

multipronged approach of habitat restoration, promotion of native species, and targeted 

removal of invasives. We describe below some examples of how such a human-as-habitat 

approach might alter clinical practice.  

An ecological approach to managing invasions. An understanding of the 

dominant mechanisms of community assembly could directly alter how clinicians treat 

infectious disease. Consider, for example, the rise of drug-resistant pathogens during the 

course of drug treatment. We can consider this a “special case” of community assembly, 

much as we did invasion by a pathogen (see above). We can ask: what is the relative 

importance of dispersal, diversification, environmental selection and ecological drift in 

the successful invasion by this drug-resistant strain? If the source of these strains is 

primarily through random sampling of the external environment, then the most effective 

preventative strategy may be quarantine and enhanced hygiene. In contrast, if such strains 

arise primarily through diversification of resident pathogens, then multi-drug treatment 

may be more effective (to make successful evolution more difficult). If the drug-resistant 

strains are already present at the outset of treatment and increase in abundance via 

environmental selection, then drug cycling may be the most effective treatment to reduce 

the overall competitive advantage of the resistant strains. If drug-resistant strains 

establish primarily through ecological drift, then disturbance may be crucial to their 
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establishment (to free up ecological “space” for their invasion). In this case, reducing 

disturbance of the resident microbiota may be most effective. In this way, a detailed 

understanding of the relative importance of different community assembly processes can 

be used to tailor the treatment of disease. 

Health as a product of ecosystem services. Humans benefit from a variety of 

processes supplied by natural ecosystems. Collectively these benefits are known as 

ecosystem services (Daily et al., 1997). There is growing evidence that human health is a 

collective property of the human body and its associated microbiome, and thus could be 

considered a net effect of ecosystem services. We envision clinical medicine focused on 

managing the human body and its associated microbiome to preserve these ecosystem 

services. How might this be accomplished? In general ecology, the management of an 

ecosystem service requires four basic steps (Allan and Stankey, 2009): i) identification of 

ecosystem service providers (ESPs; taxa that provide specific ecosystem services) and 

characterization of their functional roles; ii) determination of how community context 

influences the function of these providers; iii) assessment of key environmental factors 

influencing the provision of services; and iv) measurement of the spatial and temporal 

scales at which these providers and their functions operate. This general framework 

would work equally well for human health-associated ecosystem services. If studies of 

the human microbiome were structured around these four priorities, the development of 

an ecological approach to medicine could be accelerated. Progress has been made in 

identifying ESPs (“biomarkers”; Lemon et al., 2012); for example, declines in 

Faecalibacterium prausnitzii are associated with inflammatory bowel disease, and this 

organism may be an ESP for health in the human gut (Sokol et al., 2008).  
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Adaptive management of the human body. Transitioning clinical practice from the 

body-as-battleground to the human-as-habitat perspective will require rethinking how one 

manages the human body. In the management of plant and animal communities, a 

system-level approach known as “adaptive management” has become popular. This 

approach is a structured, iterative process of decision-making, one that utilizes system 

monitoring to continually update management decisions (Allan and Stankey, 2009). It has 

been successfully used to manage biodiversity in a variety of habitats, including 

communities in highly disturbed environments impacted by overfishing and by climate 

change (Allan and Stankey, 2009). For the human body, we envision that this approach 

would involve monitoring of the microbiome during health, to establish a healthy 

baseline, with more intensive monitoring during disease and treatment. This will require 

the development of new diagnostic tools that are both accurate and sufficiently rapid to 

inform decisions regarding therapeutics (Lemon et al., 2012). Such diagnostics are not 

yet feasible, but given recent advances in our ability to survey the human microbiome, 

this possibility is not far in the future, especially if we are able to identify particular 

components of the human microbiome that contribute disproportionately to the 

maintenance of human health. An adaptive management approach to clinical medicine is 

the ultimate in personalized medicine, with treatments tailored to individuals based on 

diagnostic changes in an individual’s microbiome, and continually adjusted through 

regular monitoring. Such an information-intensive approach, guided by ecological theory, 

has the potential to revolutionize the treatment of disease. 

To achieve the goal of treating intestinal diseases by reliably and predictably 

altering the human gut microbiota, we must first understand how the gut microbiota 
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assembles. Model organisms provide experimental systems from which we can sample a 

large number of hosts whose conditions can be highly controlled. The next chapter 

focuses on the typical assembly of the intestinal microbiota of the emerging host-microbe 

model organism, the zebrafish. 
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CHAPTER III 

THE COMPOSITION OF THE ZEBRAFISH INTESTINAL MICROBIAL 

COMMUNITY VARIES ACROSS DEVELOPMENT 

From Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, et 
al. (2016). The composition of the zebrafish intestinal microbial community varies across 
development. ISME J 10: 644–654. 

 
Animal development occurs in a dynamic microbial world. The resulting 

associations between animals and microbes profoundly influence the maturation of their 

tissues and the function of adult organs. In particular, the development of the vertebrate 

digestive tract, which harbors the vast majority of microbial cells in the body, is strongly 

influenced by the presence and composition of the gut microbiota (Bates et al., 2006; 

Olszak et al., 2012; Semova et al., 2012; Sommer and Bäckhed, 2013). A comprehensive 

description of animal development must therefore include not only a catalogue of the 

birth, specification, and differentiation of the animal cells that comprise the body but also 

the associated microbial cells (McFall-Ngai et al., 2013). Here we present a 

comprehensive survey of the intestinal microbiota of a single large sibling group (sibship) 

of the model vertebrate zebrafish (Danio rerio) throughout development. 

Our study spanned major milestones in zebrafish development under common 

laboratory rearing conditions. Zebrafish are fertilized externally, therefore post-

embryonic developmental stages are referenced as days post-fertilization (dpf). Zebrafish 

embryos initially develop in essentially sterile chorions and the larval stage begins when 

the organism hatches from its chorion and first encounters microbes in its external 

environment (between 2 and 3 dpf). By the time of hatching, most of the larva’s organs 

have been specified but will continue to grow and mature into the adult structures in 
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interaction with associated microbes. This includes the maturation of the intestine, which 

is open to the surrounding environment between 3 and 4 dpf, allowing exposure to 

microbial colonists (Bates et al., 2006). At approximately 5 dpf the yolk becomes 

depleted and larval zebrafish begin ingesting food. The development and differentiation 

of zebrafish continues into adulthood. While juveniles of both sexes have ovary-like 

gonads, they differentiate into sex-specific gonads by approximately 4 weeks post 

fertilization and continue to develop secondary sex characteristics well into adulthood 

(approximately 10 – 12 weeks post fertilization depending on rearing conditions; Uchida 

et al., 2002). Initially, the ability of the host to defend against microorganisms is limited 

to innate immune activities, with the adaptive immune system reaching functional 

maturity around 4 weeks post fertilization. Many of the attributes that make zebrafish an 

excellent model for studying vertebrate development, such as its early optical 

transparency, small size, high-fecundity, and availability of genetic and genomic 

resources (Howe et al., 2013; Phillips and Westerfield, 2014), also lend it to studies of 

vertebrate host-microbiota interactions. Large numbers of zebrafish can be maintained in 

a shared and easily sampled aquatic environment, allowing a high degree of biological 

replication along with information from associated environmental microbial 

communities.  

The large degree of biological replication that is possible with zebrafish is an 

important advantage in understanding the extensive interpersonal variation observed in 

vertebrate-associated microbiota (Friswell et al., 2010; The Human Microbiome Project 

Consortium, 2012; Rogers et al., 2014). Interindividual variation in humans is greatest 

during early stages of infant colonization and decreases with age, while bacterial 
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diversity within individuals generally increases from initial colonization at birth, 

stabilizing around 2 - 3 years of age (Palmer et al., 2007; Yatsunenko et al., 2012; 

Avershina et al., 2014). During this period, weaning marks a dramatic transition for the 

developing infant microbiota as dietary change, the removal of maternally provided 

immunologic factors and loss of breast-feeding derived microbes begins to shift the 

intestinal microbiota towards an adult-like composition (Bergström et al., 2014). Thus, 

changes in diet and physiology over animal development are closely intertwined and 

likely interact to shape developmental changes in the associated microbiota. 

In the present study, we exploit the advantages of the zebrafish model system to 

determine how associated microbial communities change along with key developmental, 

environmental and dietary transitions of the host. Ours is the largest study to date of 

vertebrate intestinal microbiota from a single sibship of animals throughout development. 

We observed stage specific changes in microbiota composition over development. Within 

each developmental stage there remained extensive inter-individual variation, despite the 

fact that the hosts belonged to a single sibship and shared the same rearing conditions and 

environments. Across development, we observed that the intestinal bacterial communities 

became increasingly different among individual hosts and distinct from the surrounding 

environment. 

  

Materials and Methods 

Experimental design and sample collection 

We surveyed the gut microbiota of a pair of adult zebrafish parents and 135 of 

their offspring reared concurrently under identical environmental conditions at multiple 
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stages in their development, using high throughput sequencing of the 16S rRNA gene. To 

reduce potential effects of host genotypic variation, this population consisted solely of 

offspring from a single mating pair. These siblings were split evenly among four replicate 

tanks, resulting in 70 fish per tank, and were raised in a manner intended to generally 

reflect commonly employed zebrafish husbandry practices, including diet and water type, 

flow rate and frequency of changes (Figure 3A, lower portion). We sampled zebrafish 

and their surrounding tank environment at multiple time points meant to capture 

important developmental transitions: when the entire intestinal tract is first open and 

microbial colonization of the lumen first occurs (4 dpf), once fish must rely on ingesting 

food for nutrition (10 dpf), the maturation of the adaptive immune system (21, 28, and 35 

dpf), sexual maturity and dimorphism (75 dpf), and senescence (380 dpf; Figure 3A, 

upper portion). At each time point we sampled the dissected intestines of multiple fish 

sampled evenly across each of the four replicate tanks, resulting in 20 fish (5 per tank) 

per time point for ages 4 through 35 dpf, 24 fish (6 per tank, 3 male and 3 female) at 75 

dpf, and 18 fish (6 per each of three replicate tanks) at 380 dpf (Figure 3A; some samples 

were later removed due to poor sequencing depth). We also measured the standard length 

(SL) of each fish as a metric of zebrafish staging and growth (Parichy et al., 2009). To 

examine the maturation of the adaptive immune system, we measured transcript levels of 

secreted immunoglobulin M (sIgM) from the carcasses of the 10, 21, 28, 35, and 75 dpf 

fish (time points spanning the course of immune maturation). Both SL and sIgM 

transcript levels increased with development (Figure 3B). Within a given age there was 

much greater variation in sIgM transcript levels than in SL, which showed little variation 

until the last time point.  
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Figure 3. Experimental design and zebrafish development. A) Experimental design 
showing important developmental events (top) and husbandry events (bottom) during the 
course of the study. The number of fish initially sampled among 4 tanks at each time 
point is shown, although post-sequencing rarefaction in some cases reduced this number 
for analyses (see Materials and Methods). Artemia are commonly called brine shrimp. 4 
and 10 dpf fish are considered larvae, 21 – 35 dpf fish are juveniles and 75 and 380 dpf 
fish are adults. B) The mean standard length and secreted IgM (sIgM) transcript levels (a 
proxy for adaptive immune development) of fish at sampled time points are shown with 
standard deviations. dpf, days post-fertilization; ND, not determined. 
 

Intestinal and environmental samples were collected and prepared in a manner 

that minimizes cross-contamination of samples, tanks, and time points. Sampled animals 

from each time point were collected from the fish facility before they were fed, at 

approximately the same time of day (between 09:30 and 10:00 AM). Animals were then 

transported to dissection stations in their own tank water and euthanized by addition of 

tricaine (2.1 ml of 0.4% tricaine per 50 ml fish water; 0.22 µm filtered) prior to 
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dissection. Each animal was dissected on a separate, sterile glass slide (larva) or Petri 

dish cover (juvenile, adults) under a dissecting microscope as previously described 

(Milligan-Myhre et al., 2011). Larval and juvenile fish dissections were performed using 

individual-use insect pins, while sterile, individual-use scalpels were used for adult fish. 

The entire intestine from immediately posterior to the esophagus to the vent was removed 

intact. The swim bladder and liver were explicitly removed from the intestine, while no 

effort was made to remove the pancreas (if attached). The intestines were then placed in 2 

ml screw cap tubes containing 0.1 mm zirconia-silica beads (Biospec Products, 

Bartlesville, OK) and 200 (4, 10, 21dpf) or 400 µl (28 dpf and older) of Enzymatic lysis 

buffer (ELB; Tris-EDTA pH 8.0 with 0.1% v/v Triton X-100; 0.22 µm filter sterilized) 

prior to freezing in liquid N2 and subsequent DNA extraction. The remaining carcass 

(without intestine, swim bladder, liver and likely the pancreas) of each fish was stored in 

TRIzol (Life Technologies, Carlsbad, CA) at -80ºC for further host RNA extraction and 

quantification of sIgM transcripts. For each sample age group, DNA extractions were 

performed on the same day as dissection. 

Environmental samples collected at each time point included scrapings from two 

glass slides each (75mm x 25mm) that were affixed to the bottom (all time points) and 

sides (28, 35 and 75 dpf time points only) of tanks at the beginning of the study, as well 

as food samples and 500 ml of water per tank. Water samples were filtered through a 0.2 

µm cellulose nitrate filter, which was then exposed to bead beating and DNA extraction 

from the filter using the same method used for the other samples. Poor DNA extraction 

efficiency or low number of sequences obtained from several of the environmental 

samples led to the retention of environmental samples from 4, 10 and 75 dpf time points 
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only in this study. We also measured multiple environmental parameters from each tank, 

including temperature, pH, and ammonia, nitrite and nitrate concentrations (data not 

shown), but these were all found to vary too little over the course of the study to provide 

explanatory power. Thus, discrete diet changes and a single environmental change from 

static water in a nursery facility to recirculating water in an adjacent main facility were 

the only measured environmental variables that appreciably varied between time points. 

All zebrafish experiments were conducted in conformity with the Public Health 

Service Policy on Humane Care and Use of Laboratory Animals using standard protocols 

approved by the Institutional Animal Care and Use Committees of the University of 

Oregon and the University of North Carolina at Chapel Hill.  

 

Illumina library preparation and 16S rRNA gene sequence analysis 

The microbial communities of individual samples were characterized by Illumina 

(San Diego, CA) sequencing of 16S rRNA gene amplicons. In order to obtain Illumina 

compatible amplicons that were amenable to a high degree of multiplexing, we employed 

a two-step PCR method to add dual indices and Illumina adapter sequences to the V4 

region of the bacterial 16S rRNA gene (see Appendix) and obtain paired-end 150 

nucleotide reads on the Illumina HiSeq 2000 platform. Illumina sequence reads have 

been deposited under the NCBI SRA accession number SRP047327. 

 16S rRNA gene Illumina reads were processed using methods implemented by 

mothur 1.28.0 (Schloss et al., 2009) and QIIME 1.6.0 (Caporaso et al., 2010). The final 

OTU table was rarefied to a depth of 4,250 sequences per sample, allowing us to retain 

all but seven (one each from 21, 28, 35 and 75 dpf groups and three from 380 dpf group 
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discarded due to low sequence depth) of the originally collected fish intestinal samples in 

subsequent analyses. Rarefaction curves showed that at this high depth of sampling we 

were able to sample a large portion of the OTUs (defined using 97% sequence similarity) 

and diversity present while still retaining a large number of samples within fish of a given 

age. 

 

Diversity measures and statistical tests 

All measures of community diversity and similarity, including OTU richness, 

phylogenetic diversity, Simpson’s index, and unweighted UniFrac distances, were 

calculated in R (R Core Team, 2015) using the vegan (Oksanen et al., 2013), picante 

(Kembel et al., 2010), and GUniFrac (Chen et al., 2012) packages. Permutational 

MANOVA tests were performed using the adonis function from the vegan package. 

Phylogenetic diversity was measured as the total shared branch length of OTUs within 

each community (Faith, 1992). Tests for unimodality were done using Hartigans’ dip test 

for unimodality (Hartigan and Hartigan, 1985). Identification of significant differences in 

relative abundances in bacterial classes or KEGG functional groups among age groups 

was accomplished using the Kruskal-Wallis test with the Benjamini-Hochberg FDR 

correction. Discriminatory analysis of taxonomic groups among zebrafish ages was 

performed with LefSe (Segata et al., 2011). 

 

Results 

Zebrafish development is marked by major shifts in the dominant bacterial taxa of the 

intestinal microbiota 
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We set out to characterize the zebrafish intestinal microbiota over key 

developmental time points under standard laboratory rearing conditions, including diet 

and environment changes during larval and early juvenile stages. Diet and environment 

were held constant during late juvenile and an early adult stage (75 dpf), while a late 

adult stage (380 dpf), after a facility diet change, was added to compare adult microbiota 

of aged fish (Figure 3). Over the course of zebrafish development the diversity of 

observed intestinal microbiota decreased significantly, both in terms of the number of 

OTUs (Figure 4A; r2 = 0.19, p < 1 x 10-7), and phylogenetic diversity (Figure 4B; r2 = 

0.15, p < 1 x 10-5), with the largest changes occurring between 35 and 75 dpf, during 

which time diet and environment were held constant but the fish experienced major 

developmental changes, such as sexual differentiation. The evenness of communities, 

however, remained relatively constant over host development (Figure 4C; p = 0.288). 

We did not observe significant differences in diversity between stages of adult fish. We 

noticed that the 10 dpf samples appeared to be bimodally distributed with respect to taxa 

richness, with half of the samples having high richness and half low. We explicitly tested 

the unimodality of each distribution, and found that only the 10 dpf distribution was 

significantly non-unimodal (Hartigans’ dip statistic D = 0.1336, p = 0.002 for 10 dpf 

samples and p >> 0.1 for all other age groups). While there was no significant difference 

between the means of the standard lengths of the two distributions (two tailed t-test: p = 

0.4159), we did observe that the community composition of samples belonging to the 

high richness distribution were significantly more similar to 4 dpf samples than were 

those belonging to the low richness distribution (measured by comparing pairwise 

UniFrac distances: p < 0.001). This suggests that at approximately 10 dpf the zebrafish 
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transition from a larval to a juvenile microbiota, and that the fish we sampled were at 

different stages of this process despite being the same age. One potential explanation for 

this pattern would be a difference between fish that had begun consuming exogenous 

food earlier or later. 

 

	
Figure 4. Significant changes in diversity of individual zebrafish intestinal 
communities throughout development. A) Number of observed taxa. B) Faith’s 
phylogenetic diversity. C) Simpson’s diversity index. Black circles and error bars 
represent the means and 95% confidence intervals respectively. Letters above age groups 
indicate significant differences in the means. 
 

These changes in community diversity were accompanied by significant changes 

in the phylum-level composition of larval (4 and 10 dpf), juvenile (21, 28 and 35 dpf) and 

adult (75 and 380 dpf) fish, with particularly large differences in the taxonomic class 

composition of the Proteobacteria (Figure 5). The γ-proteobacteria were the most 

abundant class of bacteria in the study, and were especially abundant in larval intestines 

as well as environmental samples. Concurrent with the change in food and environment 

at 21 dpf, a marked increase in the abundance of α-proteobacteria was observed in the 
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intestines and was followed by a decrease in abundance during the 28, 35 and 75 dpf age 

classes, during which time diet and environment were held constant. There was a 

decrease in the abundance of β-proteobacteria during these same stages, from a peak at 

28 dpf. Interestingly, the β-proteobacteria were particularly abundant in all food and 

environmental samples collected from 10 dpf fish and before (71% average) yet were not 

consistently as abundant in intestinal samples until 35 dpf, suggesting a time lag between 

initial exposure and detection of abundant colonization by this class. Although their 

relative abundances differed in environmental samples, the most abundant β-

proteobacteria OTUs in 35 dpf fish were also detected in environmental samples, with the 

notable exception of an OTU belonging to the family Neisseriaceae that contributed to an 

average of 5.4% of the reads from 35 dpf fish. The proportion of these Proteobacteria 

classes decreased strongly in 75 dpf fish, despite being fed the same diet as the juveniles. 

 

	
Figure 5. Major shifts in bacterial taxa throughout development. Bacterial classes 
with >1% average relative abundance across all ages. (All taxonomic classes p < 0.0001, 
Kruskal-Wallis. 
 

Consistent with previous studies of the adult zebrafish intestine (Rawls et al., 

2004; Roeselers et al., 2011; Rawls et al., 2006) we found Fusobacteria to be abundant in 
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the adult stage (75 and 380 dpf) intestinal samples (30% and 12%, respectively), although 

they accounted for less than 1% of the total community in the 21 - 35 dpf fish. Also in 

agreement with our previous study (Roeselers et al., 2011) we found a large diversity of 

Fusobacteria OTUs within intestines (168), with the majority of these OTUs (90%) being 

classified in the genus Cetobacterium, which was found in all 38 adult intestines. OTUs 

belonging to the Aeromonadaceae family (γ-proteobacteria class) that could not be 

further classified to genus were the only grouping found in all of the 137 intestinal 

samples analyzed (Table 1). When broken down by developmental group, ten more 

genera were found in all larval intestines (4 and 10 dpf) and eleven more in all juvenile 

(21, 28 and 35 dpf) intestines, while only the Plesiomonas and Cetobacterium genera 

were also found in all adult intestines. Many of these genera were previously identified as 

part of a core microbiota of the adult zebrafish intestine (Roeselers et al., 2011). 

Additional core genera found in greater than 90% of intestines from a given 

developmental stage group included Shewanella, Vibrio, Pseudomonas and 

Streptococcus. The overall abundance of these core taxa varied from nearly 14% for the 

OTUs within the Aeromonadaceae to less than 1% for the Streptococcus, with 

considerable variation in abundance observed among age groups. An abundant class of 

uncultured Firmicutes (placed as a separate phylum in some reference taxonomies) 

referred to as “CK-1C4-19” was found in 89% of all intestinal samples and represented 

nearly 14% of the total reads in adult intestines. We detected 87 different OTUs from this 

uncultured class, which represented 3.8% of the total OTUs in the adult zebrafish 

intestines.  
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Table&1

Genus or Best (Taxa Level) 
Classification Phylum

% Presence in 
all Intestines 
(n=137) (1)

% Total 
Intestinal 
Reads (2)

% Presence in 
Larval 
Intestines 
(n=40)

% Total Larval 
Reads (2)

% Presence in 
Juvenile 
Intestines 
(n=57)

% Total 
Juvenile 
Reads (2)

% Presence in 
Adult 
Intestines 
(n=38)

% Total Adult 
Reads (2)

Relative Core Genera From 
Roeselers, et al. 2011 (3)

Zebrafish Isolated Strain 
Representatives with Genome 
Sequences (4) (5)

unclassified Aeromonadaceae (family) Proteobacteria 100.00 13.92 100.00 14.22 100.00 16.92 100.00 9.84 Aeromonas ZOR0001, ZOR0002

Shewanella Proteobacteria 97.08 2.65 100.00 6.77 100.00 1.07 89.47 0.76 Shewanella ZOR0012
unclassified Enterobacteriaceae (family) Proteobacteria 95.62 2.82 100.00 7.32 100.00 0.77 84.21 1.32 unclass. Enterobacteriaceae ZOR0011, ZOR0014

Other Enterobacteriaceae (family) Proteobacteria 95.62 1.35 100.00 3.46 94.74 0.65 92.11 0.24

unclassified Comamonadaceae (family) Proteobacteria 95.62 11.31 97.50 6.03 100.00 21.39 89.47 2.35 Diaphorobacter ZNC0006, ZNC0007, ZNC0008

Plesiomonas Proteobacteria 95.62 6.81 97.50 8.95 91.23 0.96 100.00 12.35 ZOR0011

Other Gammaproteobacteria (class) Proteobacteria 94.89 0.88 100.00 2.34 96.49 0.35 86.84 0.18

Cetobacterium Fusobacteria 94.89 6.92 85.00 0.38 98.25 1.31 100.00 22.39 Cetobacterium ZWU0022, ZOR0034
unclassified Neisseriaceae (family) Proteobacteria 94.16 3.76 95.00 0.40 100.00 8.01 89.47 1.14 ZOR0017

Pseudomonas Proteobacteria 90.51 3.49 100.00 4.13 100.00 4.01 71.05 2.22 Pseudomonas ZWU0006
Rhodobacter Proteobacteria 89.78 1.10 87.50 0.20 100.00 1.51 81.58 1.47

Other Pseudomonadaceae (family) Proteobacteria 89.05 0.62 97.50 0.80 94.74 0.60 73.68 0.48

unclassified CK-1C4-19 (class) Firmicutes 89.05 4.76 80.00 0.46 91.23 0.94 94.74 13.97 ZOR0006
Other Comamonadaceae (family) Proteobacteria 86.86 1.10 95.00 0.92 98.25 1.95 65.79 0.07

unclassified Xanthomonadaceae (family) Proteobacteria 84.67 0.38 100.00 0.79 78.95 0.21 78.95 0.23 Stenotrophomonas

Vibrio Proteobacteria 83.21 1.83 100.00 5.39 89.47 0.55 57.89 0.10 Vibrio ZWU0020, ZOR0035
unclassified Betaproteobacteria (class) Proteobacteria 81.75 0.22 97.50 0.39 91.23 0.23 55.26 0.04

unclassified Rhizobiales (order) Proteobacteria 81.75 1.44 75.00 0.15 100.00 3.21 63.16 0.23 ZNC0028, ZNC0032

Pseudoalteromonas Proteobacteria 81.02 2.01 100.00 5.48 96.49 0.89 39.47 0.13

unclassified Legionellales (order) Proteobacteria 80.29 0.74 87.50 0.87 98.25 0.85 50.00 0.49

unclassified Aeromonadales (order) Proteobacteria 78.83 0.18 97.50 0.19 71.93 0.13 73.68 0.23 ZOR0001, ZOR0002

unclassified Hyphomicrobiaceae (family) Proteobacteria 78.83 0.30 90.00 0.60 87.72 0.23 57.89 0.11

Other Rhizobiales (order) Proteobacteria 78.83 3.18 85.00 1.47 100.00 6.56 42.11 0.07

Other Betaproteobacteria (class) Proteobacteria 77.37 0.16 85.00 0.15 100.00 0.26 39.47 0.02

unclassified Rhodospirillaceae (family) Proteobacteria 75.91 0.22 92.50 0.36 85.96 0.18 47.37 0.12

Streptococcus Firmicutes 72.99 0.63 100.00 1.73 77.19 0.26 42.11 0.08 Streptococcus

Delftia Proteobacteria 72.26 0.30 92.50 0.33 66.67 0.13 63.16 0.54 ZNC0008

unclassified Pseudomonadaceae (family) Proteobacteria 70.80 0.41 90.00 0.37 87.72 0.69 28.95 0.07 ZWU0006
unclassified Rhodobacteraceae (family) Proteobacteria 70.07 0.89 40.00 0.03 98.25 1.91 63.16 0.29

Other Rhodobacteraceae (family) Proteobacteria 68.61 1.80 20.00 0.02 100.00 3.99 73.68 0.48

unclassified Vibrionaceae (family) Proteobacteria 67.88 1.34 72.50 0.23 45.61 0.02 94.74 4.54 Vibrio ZWU0020, ZOR0018, ZOR0035
Pelomonas Proteobacteria 66.42 0.81 97.50 1.52 68.42 0.84 34.21 0.04

Marinomonas Proteobacteria 65.69 0.25 92.50 0.64 82.46 0.14 15.79 0.01

unclassified Rhizobiaceae (family) Proteobacteria 64.23 1.83 47.50 0.05 96.49 4.08 34.21 0.43 ZNC0028

Corynebacterium Actinobacteria 62.77 0.43 95.00 1.24 56.14 0.12 39.47 0.05

Mycobacterium Actinobacteria 62.77 0.26 92.50 0.48 56.14 0.07 44.74 0.33

Zoogloea Proteobacteria 61.31 0.48 90.00 1.40 54.39 0.13 42.11 0.08

Halomonas Proteobacteria 60.58 1.19 95.00 3.54 70.18 0.35 13.16 0.04

Erwinia Proteobacteria 58.39 0.14 95.00 0.38 50.88 0.06 34.21 0.02

Staphylococcus Firmicutes 56.93 0.41 92.50 0.64 43.86 0.49 39.47 0.07 ZWU0021
Candidatus Rhabdochlamydia Chlamydiae 50.36 0.21 92.50 0.68 42.11 0.02 21.05 0.03

1. 'All intestines' includes the 2 parent samples as well as the larval, juvenile and adult intestines from their offspring, listed to the right.
2.  Percentages are derived from samples rarefied to 4,250 sequences per sample.
3.  Genera shared in all adults from Roeselers, et al. are listed with corresponding genera (or family where genus was ambiguous) from this study.  No attempt is made to relate 
     the single core OTU from Roeselers, et al. with only a phylum level assignment.
4.  Isolated strains with newly sequenced genomes that belong within a listed taxonomic group. Some strains are listed more than once where they may fall within more than one taxonomic grouping
     that could not be confidently classified to finer levels with short Illumina reads. 
5.  Isolated strains which were  identified as discriminatory for a given age class are highlighted in bold (larval), italics (juvenile) or underlined (adult).

Larval Juvenile AdultAll Intestinal Samples

 

Table 1. Genera found in greater than 90% of larval, juvenile or adult intestines. 
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We next asked if any of these taxonomic groups were strongly associated with 

particular stages of zebrafish development. For this analysis, we combined the 75 and 

380 dpf fish intestinal communities together into a single class (“adult”), and analyzed all 

of the age classes using a non-parametric test of significance and linear discriminant 

analysis (LDA) with the defaults implemented by LefSe (Kruskal-Wallis; p < 0.05 and 

log 10 LDA score > 2.0). These analyses identified 184 discriminatory taxa, of which the 

majority (95) distinguished the youngest, non-feeding (4 dpf) age class from all others. 

The discriminating taxa for the 4 dpf fish largely belonged to the Proteobacteria despite 

this phylum’s abundance in the entire dataset. In order to determine the most highly 

discriminatory bacterial taxa for each age class we implemented stricter cutoffs for LefSe 

(p < 0.01, log 10 LDA score > 3.5). The 10 dpf age class, which had begun feeding on 

Paramecium, were distinguished by the consistent presence of the genus Mycobacterium. 

Notably, this genus contains the fish pathogens M. marinum and M. chelonae, which 

were known to be present in our facility during the time of the experiment, and which 

have recently been shown to be efficiently transmitted to zebrafish via ingestion of 

infected paramecia (Peterson et al., 2013). While our sequences did not allow us to 

resolve the species-level identification of these Mycobacterium OTUs, we detected 

Mycobacterium sequences in every environmental sample associated with Paramecium 

feeding (8 samples, average 4% abundance), including all three replicates of the 

Paramecium food samples, suggesting a possible transmission route. The juvenile age 

classes were largely discriminated by the presence of β-proteobacteria lineages, while the 

adult class was distinguished by the low abundance Bacteroidaceae family, the prevalent 

Fusobacteria (specifically the Cetobacterium genus) and by the CK-1C4-19 candidate 
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class of Firmicutes. Differences in taxonomic composition throughout development were 

reflected by differences in the predicted functional capacity of these taxa, which included 

predicted differences in the representation of genes involved in cell motility and 

carbohydrate metabolism between adult and younger fish.  

 

Variation in microbial community composition changes over zebrafish development 

Despite the genetic similarity and shared environment of their hosts, the overall 

composition of microbial intestinal communities showed a substantial amount of 

variation among fish, as measured by the UniFrac distance (Figure 6). Communities 

associated with individual fish were more similar to communities associated with fish of 

the same age than they were to those associated with fish of different ages (Figure 6A; 

permutational MANOVA; r2 = 0.18; p < 0.001). Over time variation among hosts 

significantly increased, but the effect was small and non-monotonic in the juvenile stages 

(Figure 6B; r2 = 0.10; p < 0.001). To determine whether there were possible tank effects, 

we performed a permutational MANOVA with age, tank, and age by tank as factors. 

Neither tank nor the interaction of age by tank produced significant effects (p = 0.930 and 

p = 0.363 respectively), suggesting there was little to no tank effect that would influence 

the interpretation of our results. Prior to 75 dpf, we were unable to assign sex to each 

zebrafish using external traits, however we did not see a significant effect of sex on 

community similarity at 75 or 380 dpf (p = 0.11 and p = 0.12 respectively). Given these 

results, we grouped samples from fish raised in different tanks and fish of both sexes 

together for the remainder of the analyses. 
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Figure 6. Phylogenetic dissimilarity of microbiota from fish and environmental 
samples. A) An NMDS ordination of (unweighted) UniFrac distances among 
zebrafish intestinal communities across development.�Host age is differentiated by 
the color of points, while husbandry conditions (diet and water flow) are described in 
the legend. The age class of the host is indicated by the shape of points: circles 
indicate larvae, triangles indicate juveniles, and squares indicate adults. The effect of 
standard length on the spread of points is shown by a vector. B) Pairwise Unifrac 
distances among fish within each age group. C) Pairwise Unifrac distances between 
fish and environmental communities at each age group. For each boxplot, letters 
above age groups indicate significant differences in the means. � 

 
We next attempted to explain variation in community composition using measures 

of host age, standard length (SL), and sIgM transcript levels to disentangle the relative 

influence of time, development, and immune maturation. We used multiple regression 

analysis (Lichstein, 2007) to partition the variation in pairwise UniFrac distances among 
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hosts into the total amount of variation explained by the above host variables (i.e. 

“total”), the variation explained simultaneously by multiple variables (i.e. “shared”), and 

the variation uniquely explained by each variable independent of the others (i.e. 

“unique”; Table 2). Across the dataset, differences in the standard length of the zebrafish 

explained more variation in among-host UniFrac distances than did differences in host 

age, despite host age and standard length themselves being strongly correlated (r2 = 0.60, 

p < 0.001; Figure 3B). To determine the potential role of adaptive immune function in 

structuring communities, as well as isolate the effects of development from changes in 

diet and housing, we next compared the explanatory power of differences in standard 

length and differences in sIgM transcript levels (for those samples with measurable sIgM 

transcription levels and that shared common husbandry conditions; i.e. 28 - 75 dpf 

samples). We found that standard length was a much stronger predictor than sIgM 

transcript abundance which explained relatively little variation in UniFrac distances 

(Table 2). It is also worth noting that the explanatory power of standard length was much 

higher for these age groups, possibly the result of housing conditions being constant for 

these time points, thus enhancing the relative contribution of host development.  
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Table&2

Host Variable R2 P-value*
Across all ages:
DPF + Standard Length (total) 0.2818 0.001
DPF + Standard Length (shared) 0.0775 0.001
DPF (unique) 0.0057 0.029
Standard Length (unique) 0.1986 0.001

For 28, 35, and 75 dpf zebrafish†:
Standard Length + [sIgM] (total) 0.5084 0.001
Standard Length + [sIgM] (shared) 0.0495 0.001
Standard Length (unique) 0.4427 0.001
[sIgM] (unique) 0.0162 0.037

*P-values were calculated from a distribution of 1000 random permutations.
†These ages had measurable sIgM transcript levels and shared husbandry conditions  

Table 2. Results of multiple regressions comparing community dissimilarity with 
differences in host age, standard length, and sIgM concentrations. 
 

We computed the pairwise dissimilarity between fish intestinal communities and 

each of three communities associated with the external environment: the tank water, tank 

surfaces, and food fed to the fish. Fish intestinal communities were more similar to other 

fish intestinal communities than they were to any environmental communities (Figure 

6C; p < 0.001 for all comparisons post Bonferroni correction). The dissimilarity between 

intestinal communities and environmental communities increased over time, (p < 0.0001; 

r2 = 0.59, 0.52, and 0.13 for comparisons to tank water, surfaces, and food samples 

respectively). As a result, the intestinal communities associated with young 4 and 10 dpf 

fish were significantly more similar to surrounding environmental communities than were 

older 75 dpf fish (p < 0.001 for tank water, surface, and food environments). This pattern 

was further manifested by increased differentiation of predicted fish associated 

metagenomes from predicted environmental metagenomes. 
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Discussion 

The microbial community of the animal gut has been described as an additional 

host “organ”, however its assembly, analogous to the process of organ development, is 

poorly understood. Here we show that the microbiota of a single sibship of zebrafish 

exhibits a characteristic developmental trajectory, but the cellular composition is much 

less stereotyped than developing host tissue. Instead, we observe extensive inter-

individual variation in intestinal microbiota composition at each developmental stage, 

despite our ability to control host genotype and environment, that mirrors the inter-

individual variation routinely observed in other vertebrate hosts, including humans 

(Caporaso et al., 2011; The Human Microbiome Project Consortium, 2012) and mice 

(Benson et al., 2010; Rogers et al., 2014). We conclude that inter-individual variation in 

microbiota is a characteristic of vertebrates across development. 

This study was designed to understand developmental stage specific intestinal 

microbiota composition and diversity under standard laboratory rearing conditions of the 

zebrafish, and provides a reference for future studies investigating the crosstalk between 

developing zebrafish hosts and their microbiota. We observed major compositional shifts 

both during periods of development when diet and environment were also changing (i.e. 

from larval to juvenile stages) as well as when diet and environment remained constant 

(i.e. from late juvenile to adult stages) suggesting that host physiological development 

likely has significant effects on the microbiota independent of the other factors. The 

appearance of an adult-like microbiota in mammals begins shortly after weaning, when 

the introduction of solid foods and the removal of maternally provided immune factors 

(in particular breast-milk derived immunoglobulins) impact the composition of the infant 
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gut microbiota (Rogier et al., 2014; Bergström et al., 2014). In this study we detected 

bacterial taxa characteristic of adult zebrafish (such as Fusobacteria and the CK-1C4-19 

class) early in development but they remained low until the adult stages. While we 

observed increased sIgM levels during the transition from juvenile to adulthood that 

could influence these compositional shifts, differences in sIgM levels explained far less 

variation among microbiota than did standard length. This further supports the notion that 

morphological changes during development are likely the dominant drivers of changes in 

the microbiota, at least during periods when diet and environment are constant.  

We found that the communities associated with larval fish were more similar to 

communities associated with the surrounding environment than were adult fish, 

indicating a greater role of environmental exposure early in development. This is 

consistent with observed correlations in humans between birth delivery mode and the 

composition of the intestinal microbiota (Dominguez-Bello et al., 2010), and the relative 

instability of the intestinal microbiota between early stages of post-natal development in 

human newborns (Koenig et al., 2011; Mackie et al., 1999a; Bäckhed et al., 2015; Palmer 

et al., 2007) and in mice (Pantoja-Feliciano et al., 2013). These similarities suggest the 

intestinal environments of mammals and fish may be similar in some key aspects (e.g. 

relative changes in oxygen concentration through development), and that environmental 

exposures including diet can have significant impacts on the observed composition of 

intestinal microbiota early in development. 

The changes we observed in community composition during development 

highlight the need for careful consideration of developmental context in studies of host-

microbe interactions. At the very least, comparisons across studies should strive to use 
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consistent ages and development stages of the sampled hosts. It is well established that 

the presence and composition of the microbiota influences a wide array of host 

developmental and physiologic processes in zebrafish and other animal hosts (Bates et 

al., 2006; McFall-Ngai et al., 2013; Rawls et al., 2004). Our results highlight 

observations that some of the observed phenotypic variation in animal studies is due in 

part to variations in the microbiota. For example, it was recently shown that differences 

in microbial community composition in wild-type mice alter intestinal IgA levels, thereby 

differentially influencing susceptibility to a chemically-induced model of colitis (Moon et 

al., 2015). Likewise, it is possible that our observation of greater variation in sIgM 

transcript abundance in older fish, with little variation in size, is simply a reflection of 

increasing microbiota variation between individuals in response to widely varying 

microbial communities. In the future, it may be helpful to develop and deploy engineered 

communities of cultured microbes to provide reproducible microbiotas for broad use, or 

use experimental design strategies that control for microbial variation between 

individuals, stages, clutches, tanks, pedigrees, and facilities. Our characterization of 

intestinal microbiota dynamics across zebrafish development and the genomes of 

representative members of these communities provide a useful resource and framework 

for such future studies. 

Employing this framework as a basis to control for variation between individuals, 

and tanks, we extended it to include questions regarding the effect of host genotype on 

the microbiota. Specifically, we test the contribution of adaptive immunity to the filtering 

of the gut microbiota by the host. 
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CHAPTER IV 

THE ROLE OF ADAPTIVE IMMUNITY AS AN ECOLOGICAL FILTER ON THE 

GUT MICROBIOTA IN ZEBRAFISH 

 
The chapter is coauthored by Adam Burns, Karen Guillemin, and Brendan 

Bohannan. I collaborated with all authors in designing the following experiments. Adam 

Burns contributed equally to sample collection and DNA extraction. I was responsible for 

sequencing preparation and analysis. Adam Burns contributed invaluable input for the 

neutral modeling, both in initial interpretation and some of the following text, but all text 

was primarily written by me. All coauthors edited the text of this chapter. 

Adaptive immunity is a fascinating biological phenomenon that only emerged in 

recent evolutionary history in jawed vertebrates. Its defining characteristics are the ability 

to modify a receptor repertoire during the course of an individual’s life, and to 

“remember” encounters with previous microbes, making it much easier to prevent or 

clear subsequent infections by the same infectious agent (Flajnik and Kasahara, 2010). Its 

role in infectious disease resistance is therefore deeply studied and well characterized. 

However the role of adaptive immunity in shaping commensal microbial communities is 

not as well understood. An emerging conceptual model for this role is that of an 

“ecological filter”. The concept of an ecological filter is common to plant ecology and 

can be defined in that context as “a sieve that filters out individuals from an initial seed 

population during successive life stages and ultimately determines the success of a seed 

in producing more seeds” (George and Bazzaz, 1999). In the context of host-microbe 

associations we can view the host as the environment imposing ecological filters, and the 

microbial communities as the seeds undergoing this filtering. Given the benefits provided 
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to the host by certain bacterial taxa and the desirability of selecting against pathogenic 

microorganisms, it is in the host’s interest to filter which microbial taxa comprise its 

microbiota. Many host factors could act as ecological filters on the microbiota, from 

literal physical barriers such as intestinal mucus (Johansson et al., 2008), to more abstract 

filters such as diet (Turnbaugh et al., 2008; Wong et al., 2015). These host factors may be 

redundant, or may interact in either additive or non-additive ways. Here we explore the 

specific contribution of the adaptive immune system to filtering the intestinal microbial 

community in zebrafish. 

There is a growing body of evidence that animal immune systems can act as an 

ecological filter of the microbiota (Hooper et al., 2012), in both humans and in models 

such as mice. However, such studies, particularly those in mice, often utilize small 

sample sizes, do not fully quantify differences in communities among genotypes, or 

involve designs that cannot distinguish genotype-specific effects from those associated 

with isolation of genotypes in distinct cages (Kawamoto et al., 2014; Shen et al., 2014; 

Zhang et al., 2015). Only one study (Dimitriu et al., 2013) has looked at the strength of 

filtering by the immune system relative to transmission of microbes (or possibly other 

host factors) between cage mates. This study compared the gut microbiota between wild 

type and immunocompromised hosts that were either separated by genotype or cohoused. 

They found that when genotypes were cohoused, wild type gut communities became 

more like immunocompromised gut communities, implying that the filtering effects of 

adaptive immunity can be overwhelmed by migration from other host communities. 

However, without replicating treatments, the possibility of differences in gut bacterial 

communities arising in part from cage effects is still present in such a study. Human 
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studies that show differences in host-associated communities of the skin (Oh et al., 2013) 

or expansion of certain potential pathogens in the gut communities of 

immunocompromised patients (Daniels et al., 2007; Gori et al., 2008), utilize larger 

sample sizes than many mouse studies, but lack the control over the environmental 

conditions and genetic backgrounds of subjects provided by model organisms. 

The zebrafish is an excellent model for testing the filtering effect of adaptive 

immunity because many of the limitations of past mouse and human studies can be 

simultaneously addressed. The zebrafish possesses an adaptive immune system very 

similar to that of mammals (Rauta et al., 2012), a large number of individuals can be used 

in a single experiment, and housing conditions can be manipulated easily. Although 

innate immunity is fully functional at the time of hatching, adaptive immunity in 

zebrafish does not become fully functional until between 21 and 28 DPF (days post 

fertilization; Lam et al., 2004; Stephens et al., 2016), allowing experimenters to more 

easily disentangle the unique contributions of each type of immunity. Recently, we 

documented how the composition of the gut microbiota changes throughout zebrafish 

development (Stephens et al., 2016). There were significant changes in microbiota 

composition after 21 DPF, despite constant housing conditions and diet, which implicates 

adaptive immunity as a possible ecological filter shaping the gut microbiota. In addition, 

we inferred the relative roles of neutral and selective processes in shaping the zebrafish 

gut microbiota over development, by fitting to the data an ecological model that assumes 

only neutral community assembly processes (such as dispersal and stochastic loss of 

individuals). We found a trend of decreasing neutral model fit across development, 

implying that ecological filters become more important in shaping the gut microbiota as 
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the zebrafish develops (Burns et al., 2016). From these results, we expect that one of the 

ways that hosts increase selection on their gut microbiota through time is via the 

maturation of the adaptive immune system. 

In order to determine if adaptive immunity is an important ecological filter of the 

gut microbiota in the adult zebrafish, we compared the gut bacterial communities of wild 

type (adaptive immunity present) and rag1- (adaptive immunity inactive) hosts 

(Wienholds, 2002). We had three main hypotheses regarding adaptive immunity’s role as 

a filter. (1) Adaptive immunity acts as a filter of microorganisms in the host’s 

environment, resulting in a greater difference between environmental water communities 

and the intestinal microbiota of hosts with a functional immune system versus those 

without. (2) The filtering effects of adaptive immunity will lead to distinct differences 

between the composition of wild type and immune deficient hosts. (3) Adaptive 

immunity, due to the somatic recombination of B and T cell receptors, has an 

individualizing effect on the gut microbiota of each host, resulting in greater variation in 

community composition among wild type hosts than rag1- hosts. Because of the potential 

for transmission of microorganisms and/or host factors among hosts in a shared 

environment, we suspected that the ability of the adaptive immune system to act as an 

ecological filter would depend on types and immune state of fish that are exposed to one 

another. We therefore created a treatment with either a low or high potential for 

transmission between wild type and rag1- hosts by isolating or cohousing genotypes, 

respectively (Figure 7). We hypothesized that increasing the potential for transmission 

between wild type and rag1- hosts by cohousing genotypes would mitigate the effects of 

adaptive immunity in wild type hosts by increasing the migration of microbial taxa 
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between hosts and overwhelming the filtering effects of adaptive immunity, making their 

communities more similar to rag1- communities, as demonstrated in mice by Dimitriu et 

al. (2013). In order to measure stochastic tank-specific effects (analogous to cage effects 

in mouse studies), we maintained three tanks of each housing by genotype treatment. In 

this way, any significant differences between genotypes would have to be greater than 

any variance introduced by each tank not related to the presence/absence of adaptive 

immunity or isolating/cohousing genotypes.  

 

 

 

Figure 7. Experimental design for comparison of wild type and rag1- gut microbiota. 
In order to avoid generating 50% heterozygous offspring we cross two set of parents: two 
rag1+/+ parents and two rag1-/- parents. These sets of parents were generated from the 
same line, maintained as heterozygotes. We housed each genotype separately and 
together, and each housing treatment was replicated three times. 
 

Materials and Methods 
 

Experimental design and sample collection 
 

We crossed two pairs of fish derived from the same heterozygous (AB/Tübingen 

background) line; one pair were both rag1+ (wild type) and the other pair were both rag1-

. We raised nine tanks of 22 fish each: three tanks of only wild type, three tanks of only 
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rag1-, and three tanks with equal numbers of both genotypes. At 9 DPF, six fish from 

each tank were removed for a separate experiment. At 75 DPF, around a month after 

adaptive immunity should have become fully functional in all wild type fish, all the 

remaining samples (134) were sacrificed for gut dissection and bacterial DNA extraction. 

After the fish were removed from the tank, the entire water volume of each tank was run 

through a filter. Each filter was then subjected to DNA extraction. Water and zebrafish 

sample handling during collection, dissection, and DNA extraction were all performed as 

previously described (Stephens et al., 2016). 

Carcasses of all fish were also kept after dissection, stored in TRIzol (Life 

Technologies, Carlsbad, CA, USA) at -80 °C. A subset of the isolated wild type and rag1- 

samples were genotyped, via PCR (Wienholds, 2002), to confirm their presumed identity, 

and all cohoused samples were genotyped to determine their identity. Five cohoused 

samples with ambiguous genotyping results (appeared to be heterozygotes) were dropped 

from analysis after sequencing. 

 

Illumina library preparation and 16S rRNA gene sequence analysis 
 

We characterized the microbial communities of individual samples via Illumina 

(San Diego, CA, USA) sequencing of 16S rRNA gene amplicons. To prepare amplicons 

for Illumina sequencing, we used a single-step PCR method to add dual indices and 

adapter sequences to the V4 region of the bacterial 16S rRNA gene and generate paired-

end 250 nucleotide reads on the Illumina HiSeq 2000 platform. 

The 16S rRNA gene Illumina reads were processed using methods implemented 

by FLASH (Magoc and Salzberg, 2011), the FASTX Toolkit (Hannon Lab, 2010), and 
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the USEARCH pipeline (Edgar, 2010) as detailed in the Supplementary Information. 

Operational taxonomic units (OTUs) were defined using 97% sequence similarity. Read 

assembly, quality control, and OTU table building were done on the University of 

Oregon ACISS cluster, and all subsequent data processing and diversity analysis were 

done in R (R Core Team, 2015).  

 

Diversity measures and statistical tests 
 

Host samples with fewer than 10 000 total reads were removed from analysis, and 

OTU abundances of the remaining samples were variance-stabilized using phyloseq 

(McMurdie and Holmes, 2013) and DESeq2 (Love et al., 2014) as recommended by 

McMurdie and Holmes (2014). Because total reads across water samples were wildly 

variable, we made community comparisons with the water sample count variance-

stabilized, as above, and by rarefying the water samples to the lowest total read count, 29. 

Despite rarefying to such a lower read count, qualitative differences in community 

dissimilarity between gut and water communities between genotypes were maintained by 

both methods. Phylogenetic diversity was measured using Faith’s PD (Faith, 1992) as 

implemented in the picante package (Kembel et al., 2010). Expected PD was calculated 

for each gut community using the variance.pd function, also from the picante package. 

The input for the function was the microbial phylogeny for each genotype-by-housing 

treatment. The function calculated Faith’s PD for all subsets of the treatment phylogeny 

(from full phylogeny to a subset of 1 taxon). The expected PD for each gut community 

was therefore the variance.pd calculated Faith’s PD for a subset of the phylogeny equal 

to the number of taxa in the given gut community. The Z-scores were calculated by 
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subtracting the observed PD from the expected PD and dividing by the standard deviation 

of those differences within each treatment using the scale function. The z-scores were not 

re-centered to zero. Sørensen distances (Sørensen, 1948) between communities were 

calculated and NMDS ordinations performed using the phyloseq package. Permutational 

multivariate analysis of variance (PERMANOVA) tests on Sørensen distances were 

performed using the adonis function from the vegan package (Oksanen et al., 2016). For 

non-distance data, analysis of variance and post hoc tests of significance were performed 

using the aov and TukeyHSD functions, respectively, from the R base packages when the 

number of observations in each treatment were similar. When sample sizes were not 

similar, analysis of variance with type III sum of squares was performed using the Anova 

function from the car package (Fox and Weisberg, 2011), and post hoc tests were 

performed using the DTK.test function from the DTK package (Lau, 2013). Diversity data 

visualization was done with the ggplot2 package (Wickham, 2009). Analysis of 

biomarkers (indicator taxa) was done with LefSe (Segata et al., 2011) in Galaxy (Goecks 

et al., 2010; Blankenberg et al., 2010; Giardine, 2005).  

In order to better understand the ecological processes involved in ecological 

filtering via the host adaptive immune system, we fit our microbiota data to an ecological 

model that assumes only neutral community assembly processes (such as dispersal and 

stochastic loss of individuals). In brief, we applied the Sloan Neutral Community Model 

for Prokaryotes to the distribution of bacterial taxa in our data and assessed its fit (Sloan 

et al., 2006). The model predicts that taxa with a high abundance in a source pool of 

potential bacterial colonists will be found in a greater fraction of those hosts because, 

being more abundant, they are more likely to disperse by chance, while taxa of low 
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average abundance are more likely to be lost from individual hosts due to stochastic 

processes and a lower likelihood of random dispersal. Since we were primarily interested 

in determining how adaptive immunity mediates the filtering of the microbiota relative to 

hosts in the population lacking adaptive immunity, we defined the source pool by the 

average abundance of bacterial taxa across all hosts of both genotypes and housing 

treatments. We inferred poor model fits to be indicative of non-neutral processes, such as 

host filtering, being important in distinguishing genotypes and housing treatments from 

one another. Taxa whose frequency of occurrence across fish were inconsistent with the 

neutral model, falling outside the 95% confidence interval of the model prediction, were 

inferred to be subject to host filtering. For example, taxa that are “under represented”, 

that is present in fewer hosts than expected from their mean abundance, could be 

potential pathogens: successfully prevented from colonizing most hosts but achieving 

high abundance once established. Taxa that are “over represented”, that is found in more 

hosts than expected from their mean abundance, could be beneficial taxa actively 

promoted by the host. Using these cutoffs from the model, we partitioned communities 

into taxa with neutral and non-neutral distributions and determine whether the 

composition of these partitions differed by host genotype and housing conditions. 

 

Results 
 

Adaptive immunity intensifies host filtering 
 

We hypothesized that adaptive immunity is an important ecological filter on the 

gut microbiota, with the result that the gut microbiota are more different from the 

environmental bacterial community in wild type hosts than rag1- hosts. To test this 
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hypothesis, we compared the average beta-diversity, i.e. differences in the abundance and 

number of taxa between communities, between the gut microbiota of individual hosts and 

the bacterial communities of their tank water. As shown in Figure 8, we found that when 

adaptive immunity was present (wild type), the gut microbiota was less similar from the 

environmental community than when it was absent (rag1-). We also hypothesized that 

cohousing wild type and rag1- zebrafish would allow greater transmission of gut 

microbes and/or host factors between hosts of differing genotypes, which would either 

overwhelm the filtering effect of adaptive immunity, or cause the rag1- gut communities 

to appear more filtered. We found that when genotypes are cohoused, wild type gut 

communities become more similar to the water bacterial communities while rag1- gut 

communities remained unchanged in their similarity to water communities across housing 

treatments (Figure 8). 
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Figure 8. Dissimilarity between gut communities and their tank water. We 
measured the Sørensen distance between each zebrafish gut community and its 
surrounding tank water and compared the averages of these distances between each 
experimental treatment. Shared significance letters indicates no significant difference in 
means according to the post hoc test. 
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The absence of some or all adaptive immune function has been associated with 

changes in gut microbiota alpha-diversity, i.e. number and abundance of different taxa 

within a community, in some mouse studies, though there are conflicting reports as to the 

direction of this change (Kawamoto et al., 2014; Shen et al., 2014; Zhang et al., 2015), 

and other studies report no or minimal effects of adaptive immunity on alpha-diversity 

(Dimitriu et al., 2013; Thoene-Reineke et al., 2014). Without any strong pre-conceived 

notions, we tested the hypothesized that adaptive immunity in zebrafish alters the alpha-

diversity of the gut microbiota. We found no statistically significant differences between 

genotypes in either housing condition with regard to alpha-diversity (Figure 9A). We did 

find, however, that cohousing rag1- with wild type hosts caused a significant decrease 

observed PD relative to expected PD, i.e. phylogenetic clustering increased significantly 

for rag1- hosts when they were cohoused with wild type hosts (Figure 9B). 
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Figure 9. Phylogenetic alpha-diversity of gut communities. A) We compared the 
average phylogenetic diversity (PD) of each experimental treatment, and B) the average 
z-score of the difference between observed and expected PD for each treatment. A z-
score below zero means the observed phylogenetic diversity was less than expected from 
random sampling of the whole community tree given the number of taxa present in 
the sample. Shared significance letters indicates no significant difference in means 
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according to the post hoc test. 
 

To further investigate the role of adaptive immunity, we used a neutral model to 

ask whether the presence of adaptive immunity increases the degree of filtering between 

hosts of each genotype. For each genotype, we asked whether a neutral model could 

predict the distribution of microbial taxa across hosts by the average abundance of those 

taxa across hosts of all genotypes and housing treatments. We previously documented a 

decrease in the fit of a neutral model fit for distributions of zebrafish gut microbiota 

members through developmental time, including time after the onset of adaptive 

immunity (Burns et al., 2016). We therefore hypothesized that the presence of adaptive 

immunity, acting as an ecological filter, is one of the host factors contributing to the 

reduction of the model fit to the distributions of gut microbial taxa. A lower fit of the 

model for the wild type compared to rag1- hosts in our study would indicate that adaptive 

immunity increases the strength of filtering between hosts and the source pool of all 

potential fish associated microbes and thus support our hypothesis. 

Our analysis revealed that when genotypes were isolated, the fit of the neutral 

model was significantly lower for wild type hosts than rag1- hosts, however, when 

cohoused, we found the opposite relationship (Figure 10). In particular, the model fit for 

wild type hosts was robust to housing (no significant difference), while the fit of the 

model for rag1- host had a dramatic shift between housing conditions. 
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Figure 10. R2 values for fit of neutral model to each tank. Each point in the plot is one 
random bootstrap. We then compared the mean R2 values for the neutral model for each 
treatment. Shared significance letters indicates no significant difference in means 
according to the post hoc test. 
 

Adaptive immunity acts as an individualizing filter 
 

One of the hallmarks of adaptive immunity is the somatic rearrangement and 

hypermutation of T and B cell receptors. These processes allow even genetically identical 

hosts to possess quite different adaptive immune receptor repertoires (Weinstein et al., 

2009). Different adaptive repertoires could theoretically filter the gut microbiota in 

different ways within each wild type host, while other host factors (in a near-isogenic 

population) should filter the gut microbiota similarly across all hosts. We therefore 

hypothesized that adaptive immunity acts as an individualizing filter, making wild type 

hosts more dissimilar, on average, from other wild type hosts than rag1- hosts would be 

from each other. When we compared the beta-diversity between hosts of the same 

genotype, we indeed found that wild type hosts had a significantly greater average 

dissimilarity than rag1- hosts (Figure 11). For the cohoused genotypes, we expected two 

possible outcomes. If adaptive immunity is a robust filter, we expected to see no change 
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in its individualizing effect on the wild type, while if it is not robust, we expected 

dispersal from rag1- hosts to make the wild type hosts more homogenous. If dispersal 

between hosts was minimal, we expected no change in the homogeneity of either host 

genotype. As seen in Figure 11, when genotypes are cohoused, the homogeneity of wild 

type hosts remains unchanged from that of isolated wild types, implying that, as an 

individualizing filter, adaptive immunity is robust to dispersal from other genotypes. On 

the other hand, rag1- hosts become significantly less homogenous (average inter-host 

similarity goes up) than when they are isolated, a possible mechanism of which is 

dispersal from wild type hosts causing rag1- hosts to become more individualized 

(Figure 11). 
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Figure 11: Pairwise Sørensen distances between gut communities. We compared the 
average pairwise distance between gut communities within experimental treatments. 
Shared significance letters indicates no significant difference in means according to the 
post hoc test. 

 
 

Adaptive immunity subtly acts as a different filter from other host factors 
 

Given the above evidence for adaptive immunity as an extra and individualizing 

filter, we hypothesized that the gut microbiota would be more different on average 



 

 

 

64 

between wild type and rag1- hosts than within each host genotype. However, 

PERMANOVA analysis of community distance metrics was unable to distinguish gut 

bacterial communities by genotype, housing condition, or their interaction, and the 

ordination (Table 3), correspondingly, shows no visual separation between groups. 

 

 Df R2 p SES 

Housing 1 0.014 0.064 1.62 
Host Genotype 1 0.008 0.528 -0.28 

Housing:Host Genotype 1 0.009 0.309 0.21 
Residuals 110 0.969   

Total 113 1   

Table 3. PERMANOVA results of Sørensen-based pair-wise beta-diversity measures. 
 
 

We also addressed the hypothesis of adaptive immunity as a non-redundant filter 

from a different perspective: instead of asking if the presence of adaptive immunity could 

explain overall differences in gut bacterial community composition, we asked if there 

were any taxa that were indicative of the presence or absence of adaptive immunity. 

Using LefSe (a linear discriminate analysis that takes taxonomic level assignments into 

account), we indeed found that in both housing conditions there were taxa that 

discriminated genotypes. Furthermore, when genotypes were isolated from each other, 

there were more taxa indicative of each genotype, 33, than when they were cohoused, 14 

(Figure 12). 
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Figure 12. Significant indicator taxa as determined by LefSe. Highlighted taxa are 
overrepresented in the corresponding host genotype by a significant LDA score of >2.0 
A) for isolated and B) cohoused genotypes. 
 

Given our results that supported the hypotheses that adaptive immunity is an extra 

filter, an individualizing filter, and that there are taxa that discriminate between the 

presence and absence of adaptive immunity, yet PERMANOVA was unable to 

distinguish gut bacterial communities by genotype, we returned to the neutral model we 

used previously in order to determine if there were differences in the subsets of taxa 

whose distributions deviated from the neutral model. The neutral model predicts that 

taxon distributions are based solely on differences in dispersal and random sampling of 

the whole community by each host. It therefore gives us the expectation that taxa that are 

on average more abundant within each host will be found in more hosts across the 

population (abundant things are found everywhere). So, in addition to estimating the fit 
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of the gut microbiota taxa distributions to the neutral model, the analysis can be used to 

assign each taxon into a “neutral” or “non-neutral” partition based on whether its 

distribution falls within or outside of, respectively, the 95% confidence interval of the 

neutral model prediction. The “non-neutral” partition can be further subdivided into “over 

represented”, if the taxon is found in more hosts than expected based on its abundance, 

and “under represented” if the taxon is found in fewer hosts than expected based on its 

abundance. Utilizing this model, we divided the gut microbiota of each host into “over 

represented”, “neutral”, and “under represented” partitions. 

PERMANOVA and ordinations (Table 4, Figure 13) of the community distances 

between partitioned communities revealed no main effect of host genotype in the 

“neutral” partition, and a marginally significant, small effect of genotype within the 

isolated housing condition. The “neutral” partition comprises the vast majority of the taxa 

in the gut microbiota, which may explain why PERMANOVA tests on the whole 

community found no significant differences between genotypes. There were no 

significant effects of host genotype or housing condition on the “under represented” 

partition. In the “over represented” partition, however, there was a significant and strong 

effect of host genotype on the gut microbiota that, unlike all our previous results, was 

robust to housing condition. That is wild type and rag1- genotypes select for different 

groups of taxa, and this differential selection is maintained even when the potential for 

microbial and/or host factor transmission between genotypes is increased. 
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Figure 13. NMDS ordinations of Sørensen distances between gut communities 
within each neutral model partition. A) Ordination of taxa with distributions within 
the 95% CI prediction of the neutral model. B) Ordination of taxa above the 95% CI 
prediction of the neutral model. C) Ordination of taxa below the 95% CI prediction of 
the neutral model. 
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 Df R2 p SES 
Partition 2 0.311 0.000 275.43 
Housing 1 0.000 1.000 -2.12 

Host Genotype 1 0.000 1.000 -2.47 
Partition:Housing 2 0.040 0.000 32.62 

Partition:Host Genotype 2 0.017 0.000 11.46 
Housing:Host Genotype 1 0.001 0.970 -1.34 

Partition:Housing:Host Genotype 2 0.015 0.000 10.00 
Residuals 316 0.615   

Total 327 1.000   
A 

 
 Df R2 p SES 

Host Genotype in Neutral-Isolated 1 0.005 0.091 1.41 
Host Genotype in Neutral-Cohoused 1 0.004 0.145 0.96 

Host Genotype in Over represented-Isolated 1 0.009 0.002 5.07 
Host Genotype in Over represented-Cohoused 1 0.010 0.001 5.67 
Host Genotype in Under represented-Isolated 1 0.004 0.163 0.87 

Host Genotype in Under represented-Cohoused 1 0.003 0.524 -0.23 
Residuals 321 0.965   

Total 327 1.000   
B 

Table 4. PERMANOVA results of ordination factors by Sørensen for all neutral 
model partitions. A) The full model with partition, housing condition, and host genotype 
as factors. B) Custom contrasts comparing host genotype within housing condition within 
partition, i.e. a method for a post hoc comparison using the PERMANOVA framework. 
 

Discussion 
 

The role adaptive immunity plays in pathogenesis has been well established, but 

its role in shaping the commensal microbiota is less well understood. Although there is 

growing evidence that adaptive immunity can act as an ecological filter of the commensal 

gut bacterial community, the nature and relative strength of this filtering is not known. 

We endeavored to rigorously test the nature of adaptive immunity’s filtering effects 

utilizing the zebrafish gut microbiota as a model. We observed that adaptive immunity 

intensifies the filtering between the environmental bacterial community and the host’s gut 
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microbiota. Cohousing wild type and rag1- zebrafish completely mitigates this effect 

such that cohoused wild type hosts become just as similar to the bacterial community in 

the surrounding water as do rag1- hosts. One possible explanation for this phenomenon is 

that, while adaptive immunity intensifies host filtering of the gut microbiota to some 

degree, increased transmission from hosts lacking the adaptive immunity filter seeds the 

water environment with fish-associated microbial taxa. Thus, when both genotypes are 

cohoused, they appear more similar to the water, because the water is actually more fish-

like, even if adaptive immunity is still acting as an environmental filter for the wild type. 

Another, not mutually exclusive, explanation is that there are differences in host factors 

(other than adaptive immunity) between wild type and rag1- hosts, for example stress 

hormones such as cortisol, and transmission of these factors reduces the filtering effect of 

adaptive immunity.  

While the above results would seem to suggest that cohousing genotypes causes 

wild type gut communities to become more like rag1- gut communities, the situation may 

be a bit more complex. As we’ve shown, while there are no differences in observed 

phylogenetic diversity between genotypes in either housing condition, cohousing 

genotypes causes a decrease in the observed phylogenetic diversity relative to expected 

phylogenetic diversity for rag1- gut communities. That is, rag1- gut communities are 

more phylogenetically clustered when cohoused with wild type host than when isolated 

from them, implying some sort of phylogenetic filtering is occurring in rag1- hosts in the 

presence of immunocompetent hosts. In a similar vein, the neutral model has a better fit 

to rag1- gut community distributions when they are isolated from wild type hosts than 

when the genotypes are cohoused. The fit of the neutral model to wild type community 
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distributions, however, is robust to housing condition. Finally, while the data demonstrate 

that isolated immunocompromised hosts are more similar to each other on average than 

wild type hosts, this difference disappears in cohoused genotypes. Again, it is not because 

wild type host become more similar to each other, but rather because rag1- hosts become 

as individualized as wild type hosts. 

In addition to determining whether adaptive immunity intensifies host filtering 

and individualizes hosts, we wanted to know if hosts with functional adaptive immunity 

filter different taxa than those lacking it. We expected to see this effect manifested as 

differences in composition of the gut microbiota between genotypes. That is, we expected 

the average pairwise community distance between genotypes to be greater than within 

each genotype. However, such analysis on the whole community revealed no significant 

effects of adaptive immunity. Because we knew there were differences in how well the 

neutral model fit for each genotype, we used the same model to partition the gut 

community of each host based on inferred selection. Intriguingly, there was only a 

marginally significant effect (of small effect size) of host genotype in the “neutral” 

partition when genotypes were isolated but not cohoused, potentially explaining why 

there were no measurable effects when considering the whole community. There was, 

however, a rather large and significant effect of host genotype on the “over represented” 

partition in both housing conditions, but no significant effect of host genotype at all in the 

“under represented” partition.  

If the primary role of adaptive immunity with regard to the gut microbiota is to 

filter out more taxa than innate immunity can on its own, we would expect to see stark 

differences between genotypes in the “under represented” partition. Since the “under 
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represented” partitions are comprised of those taxa which do not appear consistently 

across communities, we acknowledge it is possible that the lack of differentiation among 

underrepresented groups is the result of those groups being too variable to detect. 

However, we found that there was no significant difference in the dispersion between 

“over represented”, and “under represented” partitions (data not shown), suggesting this 

explanation is unlikely. Rather, in line with the paradigm popularized in McFall-Ngai 

(2007) in which the adaptive immune system functions as a facilitator of beneficial 

constituents of the microbiota, the presence of adaptive immunity changes the 

composition of microbial taxa that are “over represented”, that is, taxa that are present in 

more hosts than expected from their mean abundance in the source pool. Within the “over 

represented” partition we see a significant interaction between host genotype and housing 

condition. As the ordination in Figure 13B shows, cohoused genotypes are not a subset 

of either isolated genotype. This implies some interaction of hosts possessing functional 

adaptive immunity and those lacking adaptive immunity such that it is not a mere matter 

of one genotype’s community becoming like the other’s, but rather a different community 

assembles in each genotype in the presence of the other. This has important real world 

implications as most natural populations are comprised of interacting individuals of 

varying immunocompetence.  

 Fortunately, we had access to just such a real-world data set with which to explore 

these ideas. In the next chapter, we used a very similar set of analyses to determine how 

inflammation, helminth parasite infection, and regional market integration interact to 

filter the gut microbiota of a group of indigenous people in Ecuador. Similar to the results 

from our zebrafish, we will show that the filters affecting assembly of the intestinal 
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microbial community are strongly influenced by the potential for dispersal between hosts, 

and likely, their environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

73 

CHAPTER V 

MARKET INTEGRATION, CRP LEVELS, AND HELMINTH INFECTION 

INTERACT TO SHAPE THE GUT MICROBIOTA OF AN 

INDIGENOUS ECUADORIAN POPULATION 

 Tara Cepon-Robins collected and extracted DNA for all samples for this chapter. 

I was responsible for the DNA library preparation and sequencing, as well as the 

sequence analysis and synthesis of this chapter. James Josh Snodgrass and Melissa 

Liebert provided input on initial analyses and interpretation. Brendan Bohannan and 

Karen Guillemin edited this text. 

Despite recent strides toward inclusion of a diverse array of subjects (De Filippo 

et al., 2010; Yatsunenko et al., 2012; Schnorr et al., 2014; Clemente et al., 2015; 

Martínez et al., 2015), much of what we know about the human gut microbiota comes 

from subjects primarily in Western, market-integrated, countries. Studies that have 

focused on differences between market-integrated and more traditionally living 

populations have found striking differences in their gut microbiotas. In particular, the gut 

microbial communities of people from market-integrated cultures tend to be less diverse 

within a person but more dissimilar between people (De Filippo et al., 2010; Yatsunenko 

et al., 2012; Schnorr et al., 2014; Clemente et al., 2015; Martínez et al., 2015). Some of 

this reduced within-host (or “alpha”) diversity may be explained by the high rates of 

chronic inflammation found in many market-integrated populations (McDade et al., 

2012). Inflammation, both acute and chronic, has been associated with decreased gut 

microbiota diversity (Spor et al., 2011). Along similar lines, the 'hygiene hypothesis' 

posits that the lack of diversity of the Western gut microbiota is due in part to decreased 
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prevalence of helminth infections (Yazdanbakhsh, 2002), which are associated with 

increased diversity of gut microbial communities (Lee et al., 2014). One of the 

mechanisms proposed for how helminths increase diversity is through the suppression of 

the host's inflammatory immune response, but other mechanisms, such as direct 

competition with or facilitation of bacterial species, have not been ruled out. How 

immune response, helminth infection, and market integration interact to affect the 

assembly of the gut microbiota has yet to be elucidated. 

The Shuar people of Ecuador provide an intriguing population for studying such 

an interaction. Shuar living in the Upano Valley (UV) have relatively easy access to 

market centers and often live in communities comprised of multiple ethnicities. In the 

region just east of the Upano Valley, separated by the Cutucú Mountains (Cross-Cutucú: 

CC), the Shuar live, on average, much more traditional lifestyles (Cepon-Robins et al., 

2014). These differences in lifestyle are reflected in three style of life (SOL) metrics: 

House, Market, and Traditional (Liebert et al., 2013). The SOL-House metric is 

determined by the the coding of amenities in a person's home such as their type of floor, 

access to running water, or access to electricity. The SOL-Market metric is a percentage 

of objects owned by an individual from a list of market-associated things, such as a car. 

Conversely, the SOL-Traditional metric is a percentage of objects owned by an 

individual from a list of traditional-associated things, like a blowgun. As Figure 14 

shows, these metrics correlate with each region in the way we would expect: SOL-House 

and SOL-Market are higher in the Upano Valley than the Cross-Cutucú region, and the 

opposite is true for SOL-Traditional. Both regions experience helminth infection at a 

relatively high rate (compared to Western populations), while chronic inflammation, as 
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measured by C-Reactive Protein (CRP), is almost non-existent (McDade et al., 2012). 

This population, therefore, provides an opportunity for studying how temporary, rather 

than chronic, differences in CRP levels interact with helminth infection and proximity to 

market centers to shape the human gut microbial communities. More importantly, though, 

the Shuar population offers a snapshot of gut microbial communities that have undergone 

and are undergoing rapid transition (over the course of a few decades) from more 

traditional selective pressures to more Western ones. We know from anthropological 

work in the area that, especially for older subjects, their style of life metrics at the point 

of sample collection are not necessarily the same they would have been earlier in their 

life. As mentioned above, we also know that there is more opportunity for Shuar in the 

Upano Valley to have contact, and therefore possible microbial dispersal, with people of 

various other ethnicities, life styles, and regions of Ecuador than Shuar in Cross-Cutucú, 

who mostly interact with other Shuar. The data we present below shows that these 

regional differences can significantly affect the ecological filtering on the gut microbiota 

by innate immunity and parasitic helminths. 
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Figure 14. Style of life metrics by region. The SOL-House metric is determined by the 
the coding of amenities in a person's home. The SOL-Market metric is a percentage of 
objects owned by an individual from a list of market-associated things. The SOL-
Traditional metric is a percentage of objects owned by an individual from a list of 
traditional-associated things. 

Materials and Methods 
 

Stool and blood sampling 
 

The samples for this study were originally collected as a part of the Shuar Health 

and Life History Project (SHLHP; www.bonesandbehavior.org/shuar), which is co-

directed by Larry Sugiyama and Josh Snodgrass. Stool samples were collected as 

described in (Cepon-Robins et al., 2014). Briefly, subjects were given a pre-packed 

plastic bag containing an empty stool container and clean implements with which to 

collect the stool. Subjects returned the containers, and samples were processed within an 

hour of sample drop off. Stool samples were examined for soil transmitted helminth eggs 

in the field by a trained observer. Infection intensity levels were classified based on EPG 

cutoffs according to (Montresor et al., 1998). Blood sampling methods will be fully 

described in a forthcoming article by Tara Cepon-Robins. In short, several drops of 

whole blood were collected on filter paper from a finger prick following standard 
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minimally invasive collection methods (McDade et al., 2007). While in Ecuador, 

bloodspot cards were stored frozen (at -30 °C) in portable, solar-powered freezers and 

transported frozen on dry-ice to the US (in order to maximize specimen integrity) for 

analysis in Dr. Josh Snodgrass’ Laboratory at the University of Oregon. Lab analyses 

were conducted using commercially-available enzyme immunoassays for CRP 

(M86005M [coating], M86284M [detection]; Biodesign, Memphis, TN), IL-6 (HS600B; 

R&D Systems, Minneapolis, MN) based on protocols for high-sensitivity assays using 

dried blood spots (Blackwell et al., 2010, 2011; McDade, 2004; Miller and Mcdade, 

2012; Tanner and Mcdade, 2007). 

 
Style of Life 

 
Style of life metrics were determined as described in (Liebert et al., 2013). 

Briefly, structured interviews, administer mostly in Spanish (or through a bilingual 

translator for those subjects who did not speak Spanish), were conducted to collect basic 

demographic and lifestyle information. The selection of items in the Shuar SOL was 

based on several years of ethnographic observations and pilot testing (unpublished data). 

The final SOL-Traditional scale contained six items reflecting investment in a foraging 

lifestyle, while the SOL-Market scale included 12 items reflecting investment in a market 

economy. Individual scores were calculated as the fraction of list items owned (range 0–

1). Six household measures were incorporated as indices of household permanence, 

access to infrastructure, market participation, and pathogen risk. The SOL-House value 

for each individual was computed based on a summation of these scores. 

 
DNA Extraction, Library Prep, Sequencing, and Processing 
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DNA from 300 stool samples was extracted using the QIAamp DNA Stool Mini 

Kit (Qiagen), following the kit protocol. Library prep of the microbial 16S V4 region was 

conducted using the same protocol as for the previous chapter. Sequencing was also done 

on the Illumina (San Diego, CA, USA) HiSeq 2000 platform, generating paired-end 150 

nucleotide reads. Sequence quality control, read assembly, and OTU clustering were all 

done using the same scripts and tool as the previous chapter as well. 

 
Diversity Measures and Statistical Tests 

 
Because interpretation of immune markers, such as CRP, is difficult with regard 

to children, all analyses were conducted on subjects of 15 years or older. Subjects were 

only included if they had data for all factors analyzed. Of the 300 samples sequenced, 79 

subjects (30 from the Upano Valley; 49 from Cross-Cutucú) met these criteria and were 

analyzed. All diversity analyses and neutral modeling was done using the same tools and 

methods in R (R Core Team, 2015) as the previous chapter. 

 

Ethics Statement 

All participants provided informed consent. Study protocols were approved by 

village leaders, the Federación Interprovincial de Centros Shuar (FICSH), and the 

institutional review board of the University of Oregon. 

No human genetic data was gathered as part of this project, and the bacterial data 

gathered was purged of human mitochondrial sequences by removing all sequences 

matching to the human mitochondrial genome. Genetic material resulting from this study 

will never be used for commercial cell-line patenting or human DNA research. 

Export from Ecuador followed legal guidelines. 



 

 

 

79 

Results 
 

There is no significant difference in within-subject diversity between regions 
 

Previous studies that focused on differences between the gut microbiota of 

market-integrated versus traditional population found that within-subject diversity, i.e. 

the number and abundance of microbial taxa within an individual host, was reduced in 

market-integrated populations (De Filippo et al., 2010; Yatsunenko et al., 2012; Schnorr 

et al., 2014; Clemente et al., 2015; Martínez et al., 2015). Because the Upano Valley has, 

on average, greater levels of market integration, and lower scores for traditional life 

styles, we predicted the within-subject diversity to be lower for these individuals than 

those living in the Cross-Cutucú region (Figure 15A). Contrary to these expectations, 

there was no significant difference in mean phylogenetic diversity (PD) between the two 

regions. 
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Figure 15. Phylogenetic diversity (PD) by Region, log(CRP+1), and Helminth 
infection. PD measures the total branch lengths of all taxa within a group, weighted by 
the abundance of each taxon. 

Higher CRP levels are associated with reduced within-subject diversity 
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CRP is a common marker for inflammation and cardio-vascular disease (McDade 

et al., 2012). Previous studies have shown that increased inflammation is associated with 

a reduction in within-subject diversity (Spor et al., 2011), so we predicted that the same 

trend would be true in our data. As Figure 15B shows, Individuals with "high" CRP 

levels, i.e. greater than the mean CRP score, had significantly lower PD than those with 

"low" CRP levels, i.e. lower than the mean CRP score. 

 
Helminth infection is associated with increased within-subject diversity 

 
Previous work has found that infection with helminths, particularly Trichuris and 

Ascaris species, increase the within-subject diversity of the gut microbiota in humans 

(Lee et al., 2014). We therefore predicted to see the same results in our study. Indeed, we 

found that individuals infected with helminths had significantly greater PD, on average, 

than those with no helminth infection. There were no significant interactions between 

region, helminth infection or CRP levels with regard to PD (Table 5). 

 

 
Df SumSq MeanSq Fvalue Pr(>F) 

Region 1 0.05 0.05 0.00 0.985 
Helminths 1 978.91 978.91 6.94 0.010 

log(CRP+1) 1 715.01 715.01 5.07 0.027 
Region:Helminths 1 25.75 25.75 0.18 0.671 

Region:log(CRP+1) 1 47.48 47.48 0.34 0.564 
Helminths:log(CRP+1) 1 234.94 234.94 1.67 0.201 

Region:Helminths:log(CRP+1) 1 7.24 7.24 0.05 0.821 
Residuals 71 10016.71 141.08 

  Table 5. ANOVA results for PD for region, helminth infection, and CRP levels. 

 
Differences in gut microbiota composition are associated by helminth infection and CRP 

level more than region 
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There are two, not mutually exclusive, mechanisms that could lead to differences 

in gut bacterial community composition between geographic regions: isolation by 

distance or differences in selective filters. Because of the physical barrier (mountains) 

between the two regions, which provides the opportunity for isolation by distance, and 

the difference in market integration, which provides potentially different selective 

pressures, we expected there to be a difference in gut bacterial community composition 

between the two regions. However, we found only marginally significant differences 

between the two regions (Table 6). On the other hand, both helminth infection and CRP 

level were significantly associated with differences in gut microbiota composition, and 

there was a significant interaction between region and helminth infection. 

 

 
Df R2 p SES 

Region 1 0.03 0.053 1.92 
Infection 1 0.05 0.007 4.18 

log(CRP+1) 1 0.04 0.014 3.54 
Region:Infection 1 0.03 0.032 2.39 

Region:log(CRP+1) 1 0.01 0.274 0.23 
Infection:log(CRP+1) 1 0.01 0.261 0.26 

Region:Infection:log(CRP+1) 1 0.00 0.947 -0.91 
Total 78 1.00 

  Residuals 71 0.82 
  Table 6. PERMANOVA results on Weighted Unifrac distances for factor interactions. 

 
The intensity of Trichuris infection best explains differences in community composition 

 
In addition to PERMANOVA (a non-parametric, non-ordination-based method), 

the vegan function envfit can be used to fit environmental vectors and factors onto an 

ordination. Figure 16 shows the vectors and factors that significantly correlate with 

community distances according to this function. Similar to the PERMANOVA, helminth 

infection and CRP levels are significant. The effect of helminth infection, in large part, 
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seems to be driven by the intensity of Trichuris, but not Ascaris, infection. This 

hypothesis is supported, as well, by the results from LefSe analysis, a method of linear 

discriminate analysis (LDA) that takes into account various taxonomic levels. As Figure 

17 shows, whether considering both regions as a whole or separately, most of the 

significant bio-marker taxa are indicative of either Trichuris-only infection or co-

infection with both Ascaris and Trichuris infection. Within just the Upano Valley, most 

bio-marker taxa are indicative of Trichuris-only infection.  
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Figure 16. Weighted Unifrac ordinations with significant factors and vectors. A two-
dimensional projection of community distances between points. Points closer together are 
more similar in composition. Point shape and color are determined by the significant 
factors according the envfit function from the vegan package in R. Significant 
environmental vectors are shown as black arrows, labelled with the factor name.  
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Figure 17: Indicator taxa as determined by LefSe analysis for various helminth 
infection statuses across both regions as a whole and within each region on its own. 
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The Upano Valley is more dissimilar than Cross-Cutucú 
 

A previous study of rural Papua New Guineans (Martínez et al., 2015) found a 

decrease in average dissimilarity between subjects in that population relative to people 

from the United States. We therefore hypothesized that, given the greater market 

integration of the Upano Valley, we should find increased inter-subject dissimilarity in 

this region relative to Cross-Cutucú. Consistent with our predictions, we found that 

subjects in the Upano Valley were more dissimilar on average than subjects in Cross-

Cutucú (Figure 18A). 
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Figure 18. Inter-subject dissimilarity for groups of interest. Inter-subject dissimilarity 
is determined by the Euclidean distance of each subject to the group centroid using an 
NMDS-based ordination of weighted Unifrac distances for A) region, B) log(CRP+1) 
level, C) helminth infection, E) the interaction between region and helminth infection, 
and F) the interaction between log(CRP+1) levels and helminth infection. 

 
Higher CRP levels decrease inter-subject dissimilarity 

 
Because CRP is indicative of an inflammatory response, which should manifest 

similarly across subjects, we expected the selection it imposes on the gut microbiota to be 

similar across subjects as well. We therefore predicted that people with CRP levels above 

the mean to have lower inter-subject dissimilarity than people with CRP levels below the 



 

 

 

86 

mean. Our analysis revealed that "high" CRP levels were associated with lower average 

dissimilarity than to "low" CRP levels, supporting our hypothesis (Figure 18B). 

	
Helminth infection increases inter-subject dissimilarity in the Upano Valley 

 
We expected that, if helminths act primarily by reducing inflammation, including 

CRP levels, uninfected individuals should be more homogeneous than infected ones. On 

the other hand, if helminths act as strong ecological filters, consistently selecting for 

specific taxa in the gut microbiota, infected individuals should be more homogeneous 

than uninfected ones. Consistent with our first hypothesis that helminths reduce the 

effects of inflammation on the gut microbiota, we found that helminth presence increased 

the average inter-subject dissimilarity (Figure 18C). Curiously, this relationship is not 

consistent across both regions: only in the Upano Valley does helminth infection 

significantly increase inter-subject dissimilarity, as there is no significant effect of 

helminth infection in the Cross-Cutucú region (Figure 18D). Furthermore, there is no 

effect of helminth infection on homogeneity when CRP levels are below the mean, but 

there is when CRP is above the mean. That is to say, when subjects have “low” CRP 

values, there is no helminth-associated effect on inter-subject dissimilarity, similar to the 

Cross-Cutucú region. However, subjects with “high” CRP and lacking helminth 

infection, have significantly lower inter-subject dissimilarity (i.e., they are more 

homogenous) than any other group. Subjects with “high” CRP levels that are also 

infected with helminths, however, have levels of inter-subject dissimilarity comparable to 

people with “low” CRP values. 
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Neutral processes are more important in Cross-Cutucú than the Upano Valley 
 
 Martínez et al. (2015) proposed that the reason for the increased inter-subject 

dissimilarity in the U.S. population compared to the Papua New Guinean population was 

that increased market integration reduces dispersal between individuals and from the 

environment to a given individual, allowing differences to arise between individuals due 

to variable selection and/or ecological drift. Based on this logic, and our similar findings 

regarding inter-subject dissimilarity (Figure 18A), we hypothesized that dispersal 

between subjects (estimated as the “migration rate” parameter in our neutral assembly 

model) would be lower in the Upano Valley than Cross-Cutucú. As we found, the 

average estimated migration rate was lower for the Upano Valley (Figure 19A), implying 

decreased inter-subject dispersal. In addition, we found that the neutral model fit was also 

lower, implying an increased importance of selection in shaping the gut microbiota of the 

Upano Valley population versus the Cross-Cutucú population (Figure 19B). 
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Figure 19. Estimated migration rates and neutral model fit for each region. Each 
point in the plot represents the neutral model results for a random subsampling, bootstrap, 
of 27 subjects from each region. The results of the modeling provided A) an estimated 
migration (dispersal) rate for each region and a B) model fit, given as the generalized 
mean R2. 
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Discussion 
 

Much of what we know about the effects of inflammation and helminth parasites 

on the intestinal microbiota are from either Western subjects or mouse studies. Western 

subjects maintain diets and lifestyles significantly different from other populations across 

the globe, and laboratory mice are typically maintained in highly hygienic environments 

that alter their immune development (Beura et al., 2016). Studies that focus on the effect 

of “westernization” on the gut microbiota often do so by comparing populations that are 

genetically and geographically distant (De Filippo et al., 2010; Yatsunenko et al., 2012; 

Schnorr et al., 2014; Clemente et al., 2015; Martínez et al., 2015). The Shuar population 

of Ecuador offer an intriguing study population because they allow us to compare the 

effects of immunity, helminth infection, and regional market integration in a set of 

populations of the same ethnicity that are in geographical proximity. 

Contrary to our expectations, we found that phylogenetic within-subject diversity 

was no different between the market-integrated Upano Valley and the traditional Cross-

Cutucú region. This lack of difference could be due to a number of non-mutually 

exclusive factors. First, it may be that the level of market integration in the Upano Valley 

is simply not great enough to strongly affect the within-subject diversity of the gut 

microbiota. Second, it may be that increased market-integration in the Upano Valley is 

too recent to have had a significant effect on average within-subject diversity. Many of 

the older population in the Upano Valley most likely experienced lower levels of market-

integration earlier in their lives, and if such experiences have legacy effects on the 

intestinal microbiota, then their microbial within-subject diversity may be higher than 

expected for their current level of market integration. Third, there may be enough 
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dispersal between the Upano Valley and Cross-Cutucú to mitigate the differences 

between the regions.  

Despite no difference between regions, our results regarding the effects of CRP 

levels and helminth infection on PD were consistent with our hypotheses. A probable 

explanation for the effect of CRP levels on within-subject diversity is that increased 

inflammation, associated with elevated CRP levels, alters the intestinal environment to 

favor a small number of taxa that are inflammation tolerant. Regardless of the 

mechanism, this result is intriguing because the majority of these subjects have CRP 

levels well below what is considered clinically significant for cardio-vascular disease, 

and yet these small differences seem to have a measurable effect on the within-subject 

diversity of the microbiota. The increase in PD due to helminth infection is probably due 

to similar mechanisms. Helminths are known to secret anti-inflammatory compounds 

(Zaiss et al., 2015; Ziegler et al., 2015), and as such, their presence may decrease the 

effects of inflammation, and thus increase the within-subject diversity of the intestinal 

microbial community. We know from this particular data set that subjects with helminth 

infections have, on average, lower CRP levels than uninfected subjects (data not shown). 

Alternatively, helminths could influence the PD of the gut microbiota in an 

inflammation-independent manner, perhaps by altering the availability of nutrients or 

other resources. 

Along similar lines to the within-subject diversity results, differences in the 

composition of the gut microbiota, as measured by weighted Unifrac community 

distances, were primarily driven by helminth infection status and CRP levels, and much 

less so by region. Again, the lack of differences between regions and significant 
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differences associated with CRP levels and helminth infection could be due to the similar 

mechanisms posited above for within-subject diversity. In line with results from other 

helminth studies (Lee et al., 2014), the intensity of Trichuris, rather than Ascaris, 

infection seems to be the main factor associated with compositional differences between 

subjects, according to ordination-based fitting of factors (Figure 16). This result was also 

born out be the LefSe analysis, which found that most of the significant biomarkers were 

indicative of Trichuris-only- or co-infection (Figure 17). Consistent with the 

PERMANOVA analysis, which found a significant interaction with region and infection 

(Table 6), the LefSe analysis found fewer biomarkers between helminth infection states 

in the Cross-Cutucú region than the Upano Valley region. Intriguingly, the archaeal 

phylum Euryarcheota, which contains the H2-utilizing methanogenic class 

Methanobacteria, was indicative of of helminth co-infection across and within both 

regions. Increased abundance of these archaea, which are present in a high percentage of 

human subjects, have been associated with increased energy harvesting by the gut 

microbiota leading to obesity in humans and mice (Zhang et al., 2009; Samuel and 

Gordon, 2006). Additionally, many bacterial taxa that indicate various helminth infection 

states can be found within the phylum Firmicutes, also associated with increased energy 

harvesting and obesity in market-integrated human subjects and mouse hosts. Similarly, 

when helminth infection was considered as a binary (absent/present), the phylum 

Bacteroidetes was an indicator for helminth absence (data not shown), and this phylum is 

often associated with the gut microbiota of lean people rather than obese. Given the low 

rates of obesity found in the Shuar population, these results may require us to reconsider 
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the relationship between these microbial species, helminth parasites, diet, and overall 

health outcomes. 

Consistent with our hypothesis that increased CRP levels should impose a similar 

selective pressure on the gut microbiota across subjects, we found that the inter-subject 

dissimilarity was significantly reduced for people with CRP levels above the mean 

compared to those with CRP levels below the mean. Likewise, helminth presence was 

associated with an increase in inter-subject dissimilarity. We have postulated above that a 

possible mechanism for how helminths alter the intestinal microbial community is 

through the dampening of the effects of inflammation. Concordantly, we found that for 

subjects with “low” CRP levels, there was no significant difference in inter-subject 

dissimilarity whether helminths were present or absent. However, subjects with “high” 

CRP levels lacking helminth infection were significantly more homogeneous (lower 

inter-subject dissimilarity) than subjects with “high” CRP levels that had a helminth 

infection and either group of subjects with “low” CRP levels. While not definitive, these 

results lend further credence to the hypothesis that helminths alter the gut microbiota, at 

least in part, by moderating the effects of inflammation. 

While there were no or few differences in within-subject diversity or species 

composition between regions, comparable to other similar studies, we found a significant 

increase in inter-subject dissimilarity within the Upano Valley relative to the Cross-

Cutucú region (Figure 18A). This result is similar to results from other studies that found 

an increase in inter-subject dissimilarity within other market-integrated populations such 

as the United States or western European countries. As stated above, Martínez et al. 

(2015), proposed that the increase in dissimilarity is due to a decrease in microbial 
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dispersal between individuals and/or variable selection on the gut microbiota due to 

differences in lifestyle or genetic factors. When we applied a neutral model of taxonomic 

distribution, we found that the model fit was lower for the Upano Valley, suggesting that 

selective processes are more important for community assembly in the Upano Valley than 

they are in the Cross-Cutucú region (Figure 19B). While this is not direct evidence for 

variable selection, per se, it is evidence that there is stronger selection of some kind in the 

Upano Valley. We also found a reduction in the estimated migration (i.e. dispersal) rate 

in the Upano Valley (Figure 19A), indicating that reduced inter-subject dispersal in 

market-integrated populations may contribute to increases in inter-subject dissimilarity as 

well. This difference in dispersal might help explain why there are significant differences 

in inter-subject dissimilarity between helminth infected and uninfected subjects in the 

Upano Valley, but not the Cross-Cutucú region. If helminth infection primarily affects 

the microbiota by reducing the homogenizing selection of inflammation, then when 

helminths are present, other selective factors or ecological drift might predominate the 

assembly of the gut microbiota, which may be causing the increased inter-subject 

dissimilarity seen in helminth-infected people in the Upano Valley. In the Cross-Cutucú 

region, however, the higher rates of dispersal, which can counter-act ecological drift and 

variable selection (Vellend, 2010), may mediate these effects such that helminth presence 

does not have an appreciable effect on inter-subject dissimilarity. 

It should be noted that both the decrease in dispersal and neutral processes 

observed in the Upano Valley Shuar population may be due, in large part, to their 

increased contact with people of other ethnicities relative to the Cross-Cutucú Shuar 

population. Dispersal in the Upano Valley Shuar may be lower, not because dispersal 
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between any individual in the Upano Valley is lower, but rather because the Shuar 

population is diluted by people of other ethnicities not sampled in this study. Likewise, 

the increase in the importance of selection in the assembly of the gut microbiota of the 

Upano Valley Shuar might be due to increased dispersal between the Shuar and other 

ethnicities who might impart different selection on their microbiota due to differences in 

lifestyle and genetic background.  

In summary, the Shuar populations of the Upano Valley and Cross-Cutucú region 

provide a unique opportunity to study how the interactions between inflammation, 

helminth parasite infection, and regional market integration shape the assembly of the 

intestinal microbial community. In particular, the differences between the market-

integration and traditionally living regional populations are not quite as drastic as other 

studies have found. This may be due to the close geographical proximity and the shared 

genetic background of each group, or because we are witnessing the effects of market-

integration on the gut microbiota as it is occurring, and not after. Market-integration 

appears to reduce microbial dispersal between individuals and increase the importance of 

selective factors on the assembly of the gut microbiota. The presence of helminth 

parasites in the gut community has strong effects on the gut microbiota, and these effects 

can be amplified by both elevated inflammatory marker levels (CRP), and increased 

regional market integration. All-in-all, the results of this study provide us with insight 

into how market-integration changes the relationships among the factors that shape the 

intestinal microbial community. 
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CHAPTER VI 

CONCLUSION 

 The interactions between animals and their associated microbial 

communities are dauntingly complex. Yet, we have begun to appreciate the importance of 

these interactions in relation to the development, physiology, health, and evolution of all 

animal species, including our own (Dethlefsen et al., 2007; Clemente et al., 2012; 

Schluter and Foster, 2012). As I argued in chapter II, this understanding can be enhanced 

by the application of ecological theory, which was developed specifically to address 

complex multi-species questions, to the analysis of hosts and their microbiota. 

Chapter III provided a specific example of how such an ecological framework—

along with the use of a high-throughput, highly controlled experimental model 

organism—could be used to document the progression of a host-microbe system through 

developmental time. From these data, as well as from the host-microbe literature, we 

inferred that host-associated microbial communities are not simply a random sampling of 

the surrounding microbial environment, but rather that the host plays an active role in 

filtering which microbes comprise its microbiota.  

These data, as well as data from mouse and human studies (Slack et al., 2009; 

Hooper and Macpherson, 2010) led us to hypothesize that an important filter of the gut 

microbiota in zebrafish might be the adaptive immune system, a host trait evolved 

specifically to interact with host-associated microbes. Chapter IV provided the evidence 

that adaptive immunity is involved in filtering the gut microbiota, but its effects are less 

pronounced than we had expected. Furthermore, increasing the potential for microbial 

dispersal between hosts of different genotypes (by cohousing rag1- and wild type fish) 
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altered the nature of host filtering on the microbiota, implying that the nature of a host 

filter is dependent on the host’s interactions with other hosts and the environment.  

Working from this basis, chapter V presented a similar analysis applied to a 

population of indigenous Ecuadorians, the Shuar, living in two regions of differing levels 

of market-integration, and separated by a significant geographical barrier, the Cutucú 

mountains. We found that, while within-subject diversity was no different between the 

regions, there were other hallmarks of “westernization” in the Upano Valley, the region 

with greater marker-integration. Such hallmarks include increased inter-subject 

dissimilarity, decreased dispersal of microbes between subjects, and an increase in the 

relative importance of selective pressures on the microbiota. We also found that even 

small changes in the inflammation marker had measurable effects on the gut microbiota, 

and that these effects were mitigated by infection with helminth parasites. Taken together 

these results may have important implications for human health, especially as more 

populations across the world become increasingly market-integrated. 

For the zebrafish model, the next logical step for future studies would be to 

determine how both branches of the immune system, the adaptive and innate, act 

individually and together to filter the gut microbiota. These could be achieved by 

comparing myd88-/- hosts, which have impaired innate immunity, with rag1-/- and wild 

type hosts. Development of a gnotobiotic-adult model for zebrafish could also be used to 

answer questions regarding the specific functions or taxa being filtered by the host 

immune system. 

With regard to the Shuar study, there is still a large amount of data available for 

analysis. Examples of such additional data include more health information, such as BMI 
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and adiposity; differences between sexes, both biological and cultural; and comparisons 

between children and adults. Taking these factors into account along with the data 

presented in this dissertation might reveal interesting interactions or stronger microbial 

filters that could give us an even better understanding of our relationship to our gut 

microbiota as a species.  
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APPENDIX 

PRIMER SEQUENCES 

Oligonucleotide Sequence (1) Use Chapter 

CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATXXXXXXGTGTGCCAGCMGCCGCGG 
16S PCR, 
round 1 III 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTXXXXXXTACNVGGGTATCTAATCC 
16S PCR, 
round 1 III 

AAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC 
16S PCR, 
round 2 III 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG 
16S PCR, 
round 2 III 

ATGGAGCAATGGCACTGTG sIgM qPCR III 

CCAAGTCACAAACACCTCCTTGGGC sIgM qPCR III 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC 
Genome 
sequencing III 

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC 
Genome 
sequencing III 

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTATGGTAATTGTGTGCCAGCMGCCGCGGTAA 
16S 1-step 
PCR IV, V 

CAAGCAGAAGACGGCATACGAGATXXXXXXXXAGTCAGTCAGCCGGACTACNNGGGTNTCTAAT 
16S 1-step 
PCR IV, V 

1. Bold characters denote the sequences targeting the 16S rRNA gene. 
   Underlined Xs illustrate the 6 or 8 base-pair index positions. 
   Corresponding colored characters indicate overlapping bases in round 1 and round 2 PCR 
primers. 
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