1,134 research outputs found

    Excitation transfer in phycobiliproteins

    Get PDF

    Medication incidents in primary care medicine: protocol of a study by the Swiss Federal Sentinel Reporting System.

    Get PDF
    BACKGROUND/RATIONALE: Patient safety is a major concern in healthcare systems worldwide. Although most safety research has been conducted in the inpatient setting, evidence indicates that medical errors and adverse events are a threat to patients in the primary care setting as well. Since information about the frequency and outcomes of safety incidents in primary care is required, the goals of this study are to describe the type, frequency, seasonal and regional distribution of medication incidents in primary care in Switzerland and to elucidate possible risk factors for medication incidents. Label="METHODS AND ANALYSIS" ="METHODS"/> <AbstractText STUDY DESIGN AND SETTING: We will conduct a prospective surveillance study to identify cases of medication incidents among primary care patients in Switzerland over the course of the year 2015. PARTICIPANTS: Patients undergoing drug treatment by 167 general practitioners or paediatricians reporting to the Swiss Federal Sentinel Reporting System. INCLUSION CRITERIA: Any erroneous event, as defined by the physician, related to the medication process and interfering with normal treatment course. EXCLUSION CRITERIA: Lack of treatment effect, adverse drug reactions or drug-drug or drug-disease interactions without detectable treatment error. PRIMARY OUTCOME: Medication incidents. RISK FACTORS: Age, gender, polymedication, morbidity, care dependency, hospitalisation. STATISTICAL ANALYSIS: Descriptive statistics to assess type, frequency, seasonal and regional distribution of medication incidents and logistic regression to assess their association with potential risk factors. Estimated sample size: 500 medication incidents. LIMITATIONS: We will take into account under-reporting and selective reporting among others as potential sources of bias or imprecision when interpreting the results. ETHICS AND DISSEMINATION: No formal request was necessary because of fully anonymised data. The results will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT0229537

    Variability and trends in total and vertically resolved stratospheric ozone

    No full text
    International audienceTrends in ozone columns and vertical distributions were calculated for the period 1979?2004 based on the three-dimensional ozone data set CATO (Candidoz Assimilated Three-dimensional Ozone) using a multiple linear regression model. CATO has been reconstructed from TOMS, GOME and SBUV total column ozone observations in an equivalent latitude and potential temperature framework and offers a pole to pole coverage of the stratosphere on 15 potential temperature levels. The regression model includes explanatory variables describing the influence of the quasi-biennial oscillation, volcanic eruptions, the solar cycle, the Brewer-Dobson circulation, Arctic ozone depletion, and the increase in stratospheric chlorine. The effects of displacements of the polar vortex and jet streams due to planetary waves, which may significantly affect trends at a given geographical latitude, are eliminated in the equivalent latitude framework. Ozone variability is largely explained by the QBO and stratospheric aerosol loading and the spatial structure of their influence is in good agreement with previous studies. The solar cycle signal peaks at about 30 to 35 km altitude which is lower than reported previously, and no negative signal is found in the tropical lower stratosphere. The Brewer-Dobson circulation shows a dominant contribution to interannual variability at both high and low latitudes and accounts for some of the ozone increase seen in the northern hemisphere since the mid-1990s. Arctic ozone depletion significantly affects the high northern latitudes between January and March and extends its influence to the mid-latitudes during later months. The vertical distribution of the ozone trend shows distinct negative trends at about 18 km in the lower stratosphere with largest declines over the poles, and above 35 km in the upper stratosphere. A narrow band of large negative trends extends into the tropical lower stratosphere. Assuming that the observed negative trend before 1995 continued to 2004 cannot explain the ozone changes since 1996. A model accounting for recent changes in EESC, aerosols and Eliassen-Palm flux, on the other hand, closely tracks ozone changes since 1995

    Brefeldin A Effects in Plants (Are Different Golgi Responses Caused by Different Sites of Action?)

    Full text link
    corecore