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Preface 

The Encyclopedia of Plant Physiology series has turned several times to the 
topic of photosynthesis. In the original series, two volumes edited by A. PERSON 
and published in 1960 provided a broad overview of the entire field. Although 
the New Series has devoted three volumes to the same topic, the overall breadth 
of the coverage has had to be restricted to allow for greater in-depth treatment 
of three major areas of modern photosynthesis research: I. Photosynthetic Elec
tron Transport and Photophosphorylation (Volume 5 edited by A. TREBST and 
M . AVRON, and published in 1977); II. Photosynthetic Carbon Metabolism 
and Related Processes (Volume 6 edited by M . GIBBS and E. L A T Z K O , and 
published in 1979); and III. Photosynthetic Membranes and Light-Harvesting 
Systems (this volume). 

As we approached the organization of the current volume, we chose a set 
of topics for coverage that would complement the earlier volumes, as well as 
provide updates of areas that have seen major advances in recent years. In 
addition, we wanted to emphasize the following changes in the study of photo
synthetic systems which have become increasingly important since 1977: the 
trend toward increased integration of biochemical and biophysical approaches 
to study photosynthetic membranes and light-harvesting systems, and a renewed 
appreciation of the structural parameters of membrane organization. 

Due to the increased complexity of the field, we also decided to try a new 
format for our volume to better serve the following two purposes. First, we 
believe a review volume on photosynthetic membranes should serve as a refer
ence source for nonspecialists interested in obtaining an overview of both oxy
genic and anoxygenic photosynthesis. This need has been answered by the inclu
sion of five introductory chapters which summarize the main broad topic areas 
of the volume. We also recognize that a review volume should provide insight 
to the "state of the art" in specific research areas which have seen major recent 
advances. To this end, Chapters 6 through 11 have been organized such that 
each consists of a number of minireviews related to a common theme. All 
of the 43 minireviews are authored by highly regarded specialists, and focus 
on recent research highlights and interpretations of significant new findings. 
Great emphasis has been placed on the integration of the materials covered 
in the introductory chapters and in the minireviews. Extensive cross-referencing 
has been used to allow easy transitions by the reader from a general to a 
specialized coverage of a topic. Similarly, all minireviews contain references 
to the appropriate introductory chapters, as well as to other minireviews. 



VI Preface 

With students in mind, the authors of the introductory chapters have stressed 
integrative and comparative aspects of their topics. This type of approach is 
becoming more and more relevant in photosynthesis research, thanks to the 
convergence of information coming from structural, biophysical, and biochemi
cal studies. Indeed, it is truly exciting to witness the progress being made toward 
the goal of a molecular understanding of the diverse biophysical and biochemical 
reactions associated with photosynthetic membranes and light-harvesting sys
tems. 

The specialized chapters in this volume begin with the topic of light harvest
ing by photosynthetic membranes. The minireviews of Chapter 6 summarize 
biochemical and structural studies of light-harvesting assemblages, with empha
sis on the light-harvesting components of bacteria and algae, since higher plant 
chloroplast components are extensively reviewed in Chapter 3. Whereas Chapter 
6 emphasizes the biochemical diversity in light-harvesting systems, Chapter 7 
consists of minireviews which discuss unifying concepts governing light-harvest
ing events. All authors in this section are concerned with photon absorption 
and structural parameters of the pigment bed that determine the efficiency of 
excitation energy transfer to reaction centers. 

The most fundamental result of photosynthetic light reactions is the conver
sion of excitation energy, derived from absorbed light, into stable chemical 
form. This occurs in the reaction center (RC). In the last 5 years there have 
been major advancements in the understanding of these processes - especially 
by those groups who have focused their work on photosynthetic bacteria. The 
identity of the cofactors (chlorophyll, pheophytin, quinones, etc.) involved in 
the initial charge separations and the events involved in charge stabilization 
are now highly defined. The minireviews of Chapter 8 present various aspects 
of this rapidly moving field, ranging from energetic considerations of the RC 
to discussions of similarities and differences among the different types of protein 
which comprise different reaction centers. 

Chapter 9 makes a transition from the highly defined bacterial reaction 
centers into the less well understood photosystems I and II of green plants. 
The inclusion of several minireviews devoted to the complexity of reactions 
in photosystem II, for example, reflects the wide diversity in studies of a system 
capable of extracting electrons from water and catalyzing a stable charge separa
tion that results in reduction of the plastoquinone pool. These studies extend 
from detailed understanding of the primary reactions to physiological adapta
tion of the process to light and chemical (herbicide) stresses. 

The reaction centers of prokaryotic and eukaryotic photosynthetic mem
branes produce high energy electrons which are utilized in electron transport 
reactions. The energy released in these reactions is coupled to ATP synthesis. 
The membrane components and processes involved in the energy-coupling reac
tions are the topic of Chapter 10. Minireviews in this section are strongly bio
chemical in emphasis, with special reference to the structural organization of 
membranes and the protein complexes which mediate proton translocation and 
ATP biosynthesis. Specific enzymes involved in electron transport and inhibitors 
which affect them are reviewed in light of information obtained since 1977. 



Preface VII 

The last chapter of this volume (Chap. 11) deals with the use of integrative 
approaches to study processes associated with control of photosynthetic mem
brane assembly and maintenance. Chapter 11 includes subject material ranging 
from comparative structural analysis of photosynthetic membranes (develop
mental diversity) to the use of physical analysis of membranes or simulated 
membrane systems to characterize functional components. The minireviews of 
this chapter will be of increasing value as the field of membrane biosynthesis 
and assembly matures to use more information about physical and biochemical 
features of the photosynthetic membranes. We can anticipate the advent of 
use of genetic engineering tools to manipulate photosynthetic membranes, and 
the rapid expansion of knowledge in this area. 

In summary, this volume is a selection of both overview chapters and numer
ous topical speciality reviews. It should be useful as a reference source and 
as a teaching aid for individuals interested in the rapidly expanding field of 
photosynthetic membranes. 

Boulder and Wilmington, Spring 1986 L . A . STAEHELIN 
C.J . A R N T Z E N 
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7.5 Excitation Transfer in Phycobiliproteins 
H . SCHEER 

1 Introduction 

One of the major strategies in the competition of photosynthetic organisms 
for light is qualitative and quantitative adaptation in their light-harvesting appa
ratus (THORNBER, Chap. 3 ; STAEHELIN, Chap. 1 ; ANDERSON, Chap. 6.4, all this 
Vol.). This includes, in particular, the usage of pigments which harvest light 
efficiently in the spectral regions not covered by the chlorophylls a and b present 
in higher plants, e.g., the bacteriochlorophylls absorbing well beyond 700 nm 
(COGDELL, Chap. 6.2, this Vol.), and the phycobiliproteins and carotenoids 
absorbing in the "chlorophyll trough" between 470 and 630 nm (GANTT, Chap. 
6.3, this Vol.). Among these, the phycobiliproteins are to date probably the 
best understood. They are not only the major light-harvesting pigments of cyan
obacteria, red algae, and cryptophytes (see STAEHELIN, Chap. 1, this Vol., for 
a general characterization of these species), microorganisms which are responsi
ble for a large fraction of the net photosynthetic production on earth, but 
they are also readily accessible and pleasing to the eye. Different aspects of 
phycobiliprotein research (GANTT 1979, 1981; G L A Z E R 1980, 1983; M A C C O L L 
1982; RÜDIGER 1979; SCHEER 1981, 1982; WEHRMEYER 1983; ZUBER 1978) and 
related topics (BRASLAVSKY et al. 1983; PRATT 1978, 1982; RÜDIGER 1980; R Ü 
DIGER and SCHEER 1983) have been reviewed in the past 5 years. In this volume, 
G A N T T (Chap. 6.3) describes the structure and function of phycobilisomes and 
Zu BER (Chap. 6.1) the primary structure of phycobiliproteins. This chapter pro
vides a brief overview of the energy transfer in biliproteins. Due to space limita
tions, only few citations could be incorporated. They are a biased selection 
from a large body of work, and should be used as a source for further references. 

2 Structure of Phycobiliproteins 

Most phycobiliproteins contain one or both of the chromophores, phycocyano-
bilin (Fig. 1 a) or phycoerythrobilin (Fig. 1 b), but additional chromophores of 
yet unknown structure are present, for example, in red algae, phycoerythrins 
("phycourobilin"), in phycoerythrocyanins, and in particular in biliproteins 
from cryptophytes. Both chromophores are linked to their apoproteins via one, 
and in some cases two (RAPOPORT and G L A Z E R 1984) stable thioether bond(s) 
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Fig. 1. Chromophores of phycobiliproteins. Molecular structures of a phycocyanobilin, 
the chromophore of PC and APC, b phycoerythrobilin, the main chromophore of phy-
coerythrins. A hypothetical conformation of the native phycocyanobilin in PC is shown 
in c (see SCHIRMER et al., 1985, for three dimensional structures of PC chromophores) 

at rings A or D to cystein residues, as has been inferred from several independent 
lines of evidence (RÜDIGER 1979; LAGARIAS et al. 1979; ZUBER 1978; KÖST-REYES 
and KÖST 1979; FREIDENREICH et al. 1978), including a recent X-ray structure 
(SCHIRMER et al. 1985). Additional, more labile bonds have been postulated 
to exist based on conflicting results (see SCHEER 1982). Studies with a new, 
mild chromophore cleavage method have recently shown the absence of a second 
bond in two phycocyanins (KUFER et al. 1983). 

The properties of the native biliprotein chromophores are profoundly in
fluenced by noncovalent interactions with the protein (see SCHEER 1982). Both 
the intense visible absorption and fluorescence of the phycobiliproteins, which 
are crucial for their functions, are caused by these interactions, and are absent 
in the denatured pigments and in free chromophores (see below). The phycobili
proteins thus present a good example of "molecular ecology", e.g., the optimiza
tion of cofactors to specific functional needs by interactions with the apoproteins 
(SCHEER 1982). 

All biliproteins are composed of two to three chromophore-bearing subunits. 
To date, the primary structures are known for more than ten different subunits, 
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including the a- and /J-subunits of all biliproteins from the cyanobacterium, 
Mastigocladus laminosus e.g. allophycocyanin (APC), phyocyanin (PC) and 
phycoerythrocyanin (PEC) (FÜGLISTALLER et al. 1983), and the red (?) alga, 
Cyanidium caldarium (APC and PC) (OFFNER and TROXLER 1983; see also 
ZUBER, Chap. 6.1, this Vol.). In the pigments from cyanobacteria and red alga, 
the a-subunit (%17kDa) bearing 1-2 chromophores and a slightly larger ß-
subunit carrying 1-4 chromophores, are always present in a 1:1 molar ratio. 
Additional chromophore-carrying y subunits of generally much larger size are 
known in some APC's and in red algal PE's (phycoerythrin) in (<xß)n y stoichiom-
etry (n = 3 or 6) (see G L A Z E R 1983 and SCHEER 1982). The fundamental structural 
units, e.g., cca'ß (GANTT 1979; MÖRSCHEL and WEHRMEYER 1975) of the crypto-
phyte biliproteins have a different composition. 

The chromophore composition is most simple in the cyanobacterial bilipro
teins, which carry only one type of chromophore on any given subunit. Subunits 
bearing two different chromophores are common in the more highly evolved 
eukaryotic red algae and cryptophytes. The chromophore-binding sequences 
are known for many phycobiliproteins (see above). Together with immunochem
ical studies and the complete peptide sequences cited above, an evolutionary 
family tree has been constructed which relates all phycobiliprotein polypeptides 
to a common ancestral gene (see ZUBER Chapter 6.1, G L A Z E R 1980; WEHRMEYER 
1983). 

Isolated biliproteins of cyanobacteria and red algae have a strong tendency 
to aggregation. Trimers ( = heterohexamers) (otß)3 or hexamers ( = heterodode-
camers) (a/?)6 are generally observed (see M A C O L L and BERNS 1981; SCHEER 
1982). The former seem to be the largest aggregates in the absence of linkers. 
In vivo, they are organized within complex structures, the phycobilisomes 
(PB'somes) (GANTT and CONTI 1966). A single PB'some can bear up to 2700 
chromophores of different types (GANTT Chap. 6.3, this Vol.) and represents 
the functional antenna unit of these organisms. In addition to the chromophore-
bearing biliproteins, PB'somes contain several, generally colorless, "linker" pep
tides, which play a crucial role in their organization and their attachment to 
the membrane (see G L A Z E R 1983). Much of the basic PB'some structure with 
an APC core and outer rods containing PC and PE (see Fig. 2 in G A N T T , 
Chap. 6.3, this Vol. for a diagram of the different types of PB'somes) has 
been obtained by combining high-resolution electron microscopy with biochemi
cal methods (MÖRSCHEL et al. 1980; G L A Z E R et al. 1979; SIEGELMAN and KYCIA 
1982; WANNER and KÖST 1980). PB'somes are located on the outer surface 
of the thylakoid membrane in a dense packing, but apparently without coopera
tion between different PB'somes. 

Very little is known about the quaternary structure of the cryptophyte bili
proteins. Cryptophytes do not have PB'somes; instead their biliproteins are 
located on the inner surface of the thylakoids and reveal virtually no substruc
ture in the electron microscope (see Figs. 3 and 19 in STAEHELIN Chap. 1, this 
Vol.). This is paralleled by a decreased tendency of the isolated pigments to 
aggregate (see G A N T T 1979; M A C C O L L and GUARD-FRIAR 1983). Preliminary 
X-ray results have recently been published (MORISSET et al. 1984). 



330 H . SCHEER: 

3 Photophysics and Photochemistry of the Chromophores 

Denatured biliproteins, in which the chromophores are uncoupled from the 
protein, as well as free bile pigments of similar structures, have flexible chromo
phores which are predominantly present in solution in a cyclic-helical conforma
tion (SCHEER 1982; BRASLAVSKY et al. 1983). These conformers have absorptions 
of moderate intensity in the visible range (eœ 17,000 M - 1 c m - 1 at neutral pH) 
(see BRANDLMEIER et al. 1981 ), low fluorescence yields (0 < 10 " 3 see BRASLAVSKY 
et al. 1983) with corresponding fast excitation decays (SCHNEIDER, unpublished) 
and low phosphorescence intensities (LAND 1979). The deexcitation is governed 
by internal conversion, which is promoted by one or more of the following 
mechanisms: proton transfer ( F A L K and NEUFINGERL 1979; FRIEDRICH et al. 
1981), vibrations, or rotations around single bonds (KUFER et al. 1983), and 
by photoreactions, e.g., to the labile 10 E isomers (BRASLAVSKY et al. 1983). 
This deactivation is only hindered if the above mechanisms are blocked, e.g., 
by a rigid fixation (KUFER et al. 1983), distortion of the chromophores (FALK 
and THIRRING 1980), or (photo)selection of more rigid and extended conformers 
(BRASLAVSKY et al. 1983). In these cases, the lifetimes of the excited states are 
increased to allow high yields of fluorescence, or photochemical reactions to 
products like the 4 E - or 15 E isomers which are stable at ambient temperatures. 

In the biliproteins, such conformers are predominant. The chromophores 
are probably rigidly fixed in an extended and twisted conformation near the 
surface of the protein (SCHEER 1982). This rather general picture has been de
tailed recently by the current X-ray analysis of a PC (SCHIRMER et al. 1985). 
The energetically unfavorable conformations must be stabilized by noncovalent 
interactions with the polypeptide chains (SCHEER 1982). The absorption in the 
visible range is thus increased by a factor of ^5, and fluorescence by several 
orders of magnitude to & >0.5 (see GRABOWSKI and G A N T T 1978 a). The phyco
biliproteins are photochemically stable at ambient temperatures. It is, however, 
of interest to note that the photoreactive, light-sensing plant pigment phyto-
chrome has a chromophore structure and protein interaction that resembles 
PC, and that partial denaturation renders phycobiliproteins to a certain extent 
photoreactive by partial uncoupling from the protein (BJÖRN 1979; BRASLAVSKY 
et al. 1983). 

In spite of the large number of chromophores present in phycobiliproteins, 
there are generally only moderate interchromophore interactions. Strong cou
pling between chromophores has been established for the pigments in crypto
phytes (HOLZWARTH et al. 1983; JUNG et al. 1980; KOBAYASHI et al. 1979), and 
may also be present in some of the cyanobacterial and red algal ones, but 
many of the isolated phycobiliproteins do not show good evidence of such 
coupling as judged from their CD spectra. However, aggregation is often paral
leled by the rise of S-shaped C D signals which are indicative of strong coupling. 
Since the chromophores are probably located at or near the surface of the 
native biliproteins, this would mean that the nearest neighbors in situ may 
not be the chromophores on the same subunits or heterodimers, but rather 
on different ones [see STAEHELIN, Chap. 1, this Vol. for a discussion of phycobil-
isome packing in vivo and the recent x-ray results of SCHIRMER et al. (1985)]. 
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4 The Energy Transfer Chain 

The participation of phycobiliproteins in photosynthesis and, in particular, their 
association with photosystem II was originally recognized by action spectro
scopy (EMERSON 1958). Energy transfer from biliproteins to chlorophylls has 
also been demonstrated in solution (FRACKOWIAK et al. 1979; KRASNOVSKII and 
EROKHINA 1969). The discovery of PB'somes (GANTT and CONTI 1966) marks 
the beginning of an understanding of phycobiliprotein function in cyanobacteria 
and red alga on a molecular basis. PB'somes collect light efficiently in the 
wavelength range between 480 and 630 nm, but their fluorescence is emitted 
almost exclusively (>95%) by a small fraction of a minor constituent, e.g., 
APC (Am a x, absorption « 6 6 5 nm, 2m a x, emission « 6 8 0 nm). If attached to the 
photosynthetic membrane, the energy is transferred further to the chlorophyll-
containing reaction centers in the membrane, preferentially to PS II (GANTT 
1981). 

In the original PB'some model derived from electron microscopic and bio
chemical studies of the red alga, Porphyridium cruentum, a phycobilisome some
what resembles an onion cut in half: a core, made up of APC, is surrounded 
by layers of PC and, further out, PE. Although this model has been considerably 
refined by applying improved techniques and working with organisms having 
less complex phycobilisomes (see above), the basic elements have remained un
changed : there is a morphological ordering from PE to PC to APC when going 
from the periphery to the center of the PB'some (see Fig. 2 in G A N T T , Chap. 
6.3, this Vol.). 

This sequence corresponds perfectly to the decrease in excitation energy 
among the three pigments, which can thus form an energy transfer chain in 
which the fluorescence of any preceding member overlaps reasonably well with 
the absorption of the next one (Fig. 2). This model was refined by fluorescence 
polarization experiments first undertaken by TEALE and D A L E (1970), which 
suggested part of an energy transfer chain to be present already within each 
individual biliprotein. The absorptions of PC's and PE's can be resolved into 
components of slightly different energies. These are assigned to individual chro
mophores of often the same molecular structure, but with slightly different 
absorption energies due to different interactions with the protein. The ones 
absorbing at shorter wavelengths act as sensitizers (s) to the ones absorbing 
and fluorescing at longer wavelengths (f chromophores), which provides an 
efficient fine-tuning of the energy transfer. 

In cyanobacteria, each individual pigment represents only a rather short 
fragment of such an energy transfer chain. PC has, for example, one s chromo
phore on the /?- and one f chromophore on both the a- and /?-subunits. The 
full transfer chain is completed by the aggregation with APC and PE in the 
PB'some. The cryptophytes represent the other extreme. They do not have 
PB'somes, instead they have biliproteins which carry sufficiently different types 
of chromophores to establish an energy transfer over the full absorption spec
trum of biliproteins. The red algae, finally, use a combination of both. They 
have PB'somes in which the major biliproteins already span a wide absorption 
range. 
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Fig. 2. Energy transfer scheme of a phycobilisome. Righi a diagramatic representation 
of a PB'some with only one outer rod containing B-PE (top double disk) and C-PC 
(lower double disk). Vertical arrows correspond to longitudinal energy transfer, with the 
downward direction strongly favored due to a larger overlap integral; horizontal arrows 
to transversal energy transfer within the disks. Left approximate absorption and fluores
cence maxima of the chromophores. *: 1 = phycocyanobilin, 2 = phycoerythrobilin, 3 = 
phycourobilin 

The energy transfer chain is completed by the transfer to the chlorophylls 
within the photosynthetic membrane. Both the final donor in the PB'some and 
the acceptor in the membrane have not yet been firmly established. At present, 
the best candidates seem to be a large chromopeptide of the APC core 
(GINGRICH et al. 1983; REDLINGER and G A N T T 1982; RUSCHKOWSKI and ZILINS-
KAS 1982) and a chlorophyll protein close to or even identical with P-680, 
respectively (CLEMENT-METRAL and G A N T T 1983, see also G A N T T , Chap. 6.3, 
this Vol.). 

5 Dynamics of Energy Transfer 

A large fraction of the energy transfer in phycobiliproteins proceeds probably 
via a FÖRSTER type process (see SAUER, Chap. 2; K N O X , Chap. 7.1, both this 
Vol.). This has been deduced from the efficiency of the energy transfer on 
one hand, and the low occurrence of strong couplings on the other. GRABOWSKI 
and G A N T T (1978 a, b) have critically investigated a series of biliproteins and 
calculated FÖRSTER'S critical distances, which are mostly in the range of 40-60 Â , 
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well beyond the diameter of the phycobiliprotein subunits ( « 3 0 Â). The formal
ism of FÖRSTER (1949) has been developed for a randomly ordered and fluctuat
ing system with high acceptor and low donor concentrations. Since probably 
none of these criteria applies to the phycobiliproteins (see above), a concise 
theoretical treatment of the process is not yet possible (BLUMEN and M A N Z 
1979; PEARLSTEIN 1982), but the critical radius is expected to be even larger 
based on still incomplete data on the chromophore orientations (see e.g., 
ZICKENDRAHT et al. 1980; SCHIRMER et al. 1985; GILLBRO et al. 1983). The sec
ond critical factor, i.e., the overlap integral between the donor fluorescence 
and the acceptor absorption, is also fine-tuned in the biliproteins (see above). 

Recent applications of picosecond time-resolved techniques to the energy 
transfer process in biliproteins have principally verified this concept. The first 
detailed investigations by SEARLE et al. (1978) established in Porphyridium omen
tum a sequential flow of excitation energy from PE via PC and APC to chloro
phyll. The observed rates of excitation energy transfer could be fit by the 
exp(t~1/2) decay law characteristic for the classical FÖRSTER tansfer. Although 
the actual kinetics can be fit well with a concise set of rise and decay times 
for the PB'somes of this organism (WENDLER et al. 1984), the physical laws 
governing the decay have been questioned. The better signal-to-noise ratios 
of the current experiments still do not allow an unequivocal discrimination 
between multi-exponential £ A e x p ( k t ) ] and non-exponential decay laws, but 
generally favor the former. This is in particular supported by the observation 
of corresponding decay and rise time constants in pairs of donors and acceptors, 
respectively (WENDLER et al. 1984). 

Qualitatively similar results have been obtained with entire PB'somes, as 
well as with isolated phycobiliproteins and their subunits from several cyanobac
teria and red algae (HEFFERLE et al. 1984a, b; H O L Z W A R T H et al. 1982; Ko-
BAYASHi et al. 1979; PELLEGRINO et al. 1981 ; SUTER et al. 1984; SWITALSKI and 
SAUER 1984; W O N G et al. 1981 ; YAMAZAKI et al. 1984). 

Photosynthetic antenna systems are optimized for high absorption cross-
sections and cooperativity. They thus present a problem for the interpretation 
of time-resolved measurements, because *S— lS annihilation can compete effi
ciently with energy transfer (see BRETON and GEACINTOV 1980; GEACINTOV and 
BRETON, Chapter 7.4). This process has been demonstrated in phycobiliproteins 
and investigated in detail by ALFANO'S group (ALFANO 1982; PELLEGRINO et al. 
1981; W O N G et al. 1981). It can be distinguished from conventional excitation 
energy transfer ( !S —°S) by its dependence on the intensity of the exciting light. 
More recent studies have thus focused on techniques which use only low photon 
fluxes, e.g., repetitive streak cameras (HEFFERLE et al. 1984a, b) or single-photon 
timing (HOLZWARTH et al. 1982; WENDLER et al. 1984; YAMAZAKI et al. 1984; 
HOLZWARTH, Chap. 7.3, this Vol.). An advantage of the former is the ready 
availability of polarized data, whereas the latter has an exceptionally high dy
namic range and can thus detect even minor contributions. 

Several criteria have been used to identify energy transfer in biliprotein 
antenna systems. The first is the analysis of time-resolved depolarization. Due 
to their rigid binding to proteins, rotational depolarization is generally thought 
to be absent on the subnanosecond time scale, and depolarization is thus be-
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lieved to be due to energy transfer among chromophores (GILLBRO et al. 1983; 
HEFFERLE et al. 1983, 1984a, b). It should be noted, however, that segmental 
movements of the chromophores (HEFFERLE et al. 1984 b) and nonparallel excita
tion and emission dipoles (SWITALSKI and SAUER 1984) have been implicated 
to rationalize the kinetics of some isolated biliproteins and their subunits. It 
is also not trivial to obtain energy transfer time from the raw data (HEFFERLE 
et al. 1984 a). The second criterion is the correspondence of decay time constants 
in the donors with rise time constants in the acceptors, which are separated 
by wavelength selective excitation and emission (HOLZWARTH et al. 1982; 
WENDLER et al. 1984; YAMAZAKI et al. 1984). 

The following conclusions can be drawn from the results obtained until 
now: the energy transfer from PE to the terminal APC chromophore proceeds 
at a time scale <100ps (e.g., 60-70 ps in Porphyridium cruentum, WENDLER 
et al. 1984; YAMAZAKI et al. 1984). It follows the pigment sequence expected 
from their energetic and morphological ordering within the PB'somes. The ener
gy transfer from PE to PC appears to be faster than that from PC to the 
APC core (SUTER et al. 1984). In isolated biliproteins, the transfer times increase 
with decreasing aggregation, e.g., from 70 ps in the trimer (ccß)3 to %500ps 
in monomeric (ay?)! PC from Mastigocladus laminosus (HEFFERLE et al. 1984b). 
The transfer times are also dependent on the species, the isolation procedure 
and temperature. An intriguing conclusion might be drawn from the comparison 
of isolated biliproteins with phycobilisomes, e.g., that the physiologically impor
tant longitudinal energy transfer toward the APC core is faster than the poten
tially wasteful transversal transfer within the platelets of the phycobilisome. 

Currently, kinetic data are only available for a single cryptophytan pigment, 
i.e., PC-645 from Chroomonas sp. (HOLZWARTH et al. 1983; KOBAYASHI et al. 
1979). The findings support again a somewhat different behavior of the crypto
phytan pigments compared to the PB'some-forming biliproteins. Differences 
between the absorption and fluorescence excitation spectra have been discussed 
in terms of a heterogeneous population of f chromophores, albeit with the 
same decay kinetics, and the results support the presence of strongly coupled 
chromophores (JUNG et al. 1980). 

6 Physiological Status 

Photosynthetic organisms are dynamic systems with the capacity to react to 
environmental changes. These changes include the structure of the phycobil
isomes, and their light-harvesting and energy-transfer capacities. The best inves
tigated feature is the chromatic adaptation of many cyanobacteria, which in
volves changes in the composition and structure of the phycobilisomes in re
sponse to changes in the qualitity of light (BJÖRN 1979; G A N T T 1981; GLAZER 
1983). Other important factors are the nutritional and developmental status 
of the organisms (CSATORDAY 1978). Considerably less is known about the 
changes in the energy transfer kinetics in these systems. Using fluorescence 
spectroscopy CSATORDAY (1978) has followed the repigmentation of Anacystis 
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nidulans cells after nitrogen starvation. This approach allows for the detection 
of particular biliproteins before they have been incorporated into the antenna 
system. HARNISCHFEGER and C O D D (1978) have observed a decrease in biliprotein 
fluorescence after illumination of dark-adapted cells of the same organism, 
which was correlated with an increased chlorophyll fluorescence. Changes of 
the fluorescence yields (FORK et al. 1982) and kinetics (KARUKSTIS and SAUER 
1984) upon treatment of algal cells with D C M U or desiccation, indicate the 
involvement of different chlorophyll containing antennas, and possibly also 
different PS II populations. This changed coupling between phycobilisomes and 
membrane-bound pigments probably contributes to the chromatic transients 
in cyanobacteria as well. These few examples have been chosen to illustrate 
that the physiological status of the cells (as well as the isolation procedures 
of PB'somes and their components) may produce significant changes in energy 
transfer reactions, which must be considered in the interpretation of the physico-
chemical data. 
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Notes Added in Proof: The field has been advancing rapidly after finishing the manuscript 
for this mini review. Important aspects should be referenced. 

The crystal structure has been determined for a second phycocyanin, viz. from Agme-
nellum quadruplicatum, which is hexameric instead of trimeric, but otherwise very similar 
to that of M. laminosus (T. SCHIRMER, W. BODE, M . SCHNEIDER, W. BODE, M . MILLER, 
M.L. HACKERT, J . Mol . Biol., in press). The details of chromophore structures and 
the linkage to the apoprotein have been determined by chemical methods, including 
the high-resolution N M R of bilipeptides (J.O. NAGY, J .E. BISHOP, A .V. KLOTZ , A . N . 
GLAZER, H . RAPOPORT, J . Biol. Chem. 260, 4864-4868 (1985)), milder degradation meth
ods (W. KUFER, G . SCHMIDT, O. SCHMID, H . SCHEER, Z. Naturforsch., in press) and 
sequencing studies (W. SIDLER, B. KUMPF, H . ZUBER, W. RÜDIGER, Abstr. Vth. Int. 
Symp. on Photosynthetic Procaryotes (ed. H . ZUBER, p. 303, 1985, ETH Zürich). The 
results include the structure of the phycourobilin chromophore in R-PE and the character
ization of singly and doubly bound chromophores, depending on the species and the 
chromophore attachment site. 

An assignment of spectrally distinct chromophores to the different chromophore 
sites of PC from M. laminosus has been suggested on the basis of fluorescence polarization, 
circular dichroism and photochemical reactivities (M. MIMURO, P. FÜGLISTALLER, R. 
RÜMBELI, H . ZUBER, Abstr. Vth. Int. Symp. on Photosynthetic Procaryotes (ed. H . ZUBER, 
1985, p. 276, ETH Zürich; W. JOHN, R. FISCHER, S. SIEBZEHNRÜBL, H . SCHEER, in Anten
nas and Reaction Centers of Photosynthetic Bacteria - Structure, Interactions and Dy
namics (eds. M.E. MICHEL-BEYERLE, H . SCHEER, S. FISCHER, Springer, Berlin - Heidelberg 
- New York, in press). 

Several new results have been presented on the excited state dynamics in biliproteins. 
Fast (7-10 ps) decay times of the short-wavelength fluorescence and a corresponding 
rise-term of the longer wavelength fluorescence has been demonstrated for PC 612 from 
the cryptophyte, Hemiselmis virescens ( C A . HANZLIK, L .E. HANCOCK, R.S. KNOX, D. 
GUARD-FRIAR, R. MACCOLL, J. Luminescence 34,99-106 (1985). Al l groups have adopted 
the multi-exponential decay analysis, at least as a phenomenological approach, requiring 
up to 5 components depending on the system and on the signal-to-noise ratios of the 
data. The physical correctness of this approach has been supported by a global analysis 
of data sets obtained at different excitation and emission wavelengths with a single set 
of components (A.R. HOLZWARTH, in Antennas and Reaction Centers of Photosynthetic 
Bacteria - Structure, Interactions and Dynamics (eds. M.E. MICHEL-BEYERLE, H . SCHEER, 
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S. SCHNEIDER), Springer Verlag, Heidelberg, Berlin, New York, 1985, in press). This 
method allows at the same time the extraction of time-resolved spectral information. 
First data on the influence of linker peptides have shown only relatively small changes 
in the excited state dynamics of an R- and a C-PC (S. SWITALSKI, K . SAUER, pers. 
communication, J. WENDLER, W. JOHN, H . SCHEER, A.R. HOLZWARTH, unpublished re
sults). The spectra of the individual components contributing to the emission have been 
studied in a chromatically adapting cyanobacterium, Fremyella diplosiphon (M. MIMURO, 
I. YAMAZAKI, T. YAMAZAKI, Y . FUJITA, Photochem. Photobiol. 41, 597-603 (1985). Partic
ular attention has been paid to the relative importance of lateral and vertical energy 
transfer, with the latter being favored in green-light adapted cells containing PE, PC 
and APC. The uncoupling of phycobilisomes from the PSII-related chlorophylls has 
been induced by heat stress in Anacystis nidulans (P. MOHANTY, S. HOSHINA, D.C. FORK, 
Photochem. Photobiol. 41, 589-596 (1985). In an interesting application, tandem phyco-
biliprotein conjugates have been used as immunofluorescent probes with an unusually 
large Stoke's shift due to the energy transfer from PE to APC (A.N. GLAZER, J. STRYER, 
Biophys. J. 43, 383-386 (1983)). 
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P-680 112, 160, 162, 165, 170, 321 

dimer vs. monomer 423 
P-680+ reduction kinetics 427 
P-700 145,160,169-172,321,476-485, 

487-494, 669 
of cyanobacteria 118,647,649,650 

P-700+ reduction kinetics 172, 175, 553, 
556-557 

P-700, apoprotein 127 
chlorophyll a-protein 103, 108, 109 
reduction by plastoxyanin 552-554 

P-870 121, 122 
primary donor complex 357 

P-960 121, 122 
P/2e ratio 561 

pairwise transfer 288-293 
particle electrophoresis 654, 655 
particle size histograms 33, 666 
particles, intramembrane 34, 62, 665-674 
PC (phycocyanin) 330 
PChl(ide) 686 
PCR 689 
perforated lamellae 689 
peridinin 271, 272 
peridinin-Chl a-protein 117, 280, 281 
peripheral reticulum 4 
permeability of thylakoid membranes 156 
peroxidation 599-601 

herbicide induced 600 
pF 339 

radical pair 354 
PF particles 30-72, 665-673 
pH in lumen 570, 572 
pH-clamp 572 
pH-gradient 186, 560 
pH-indicating dye 573 
Phaeophyceae 6 
Phaeophyta 277 
phase transitions (see also lipids) 67-70, 155 
phehylhydrozones 595 
pheophytin 93, 159, 162, 424-427 
phonon wing 412 
Phormidium 118 
phosphate group transfer 180, 187 
phosphate-water-oxygen exchange 589 
phosphatidylcholine 150, 151, 155, 696-703, 

713 
phosphatidylethanolamine 714 
phosphatidylglycerol 150, 151, 157, 694-702, 711 
phospholipase A 2 701 
phospholipase C 701 
phospholipase D 701 
phospholipid (see also lipids) 628, 686, 688, 

716, 677 
insertion into ICM 616, 634 

phosphorescence 401 
phosphoryl group transfer 144, 145 
phosphorylating units 181, 182 
phosphorylation, external electric field 565 

fluorescence 304 
in Porphyridium 267 
kinetic analysis 565 
maximal affinity 562 
onset lag 574 
rate 567 

phosphorylation/dephosphorylation of pro
teins 64, 115, 659 

photoaffinity herbicides 461 
photobleaching 470 
photochemical reaction centers 106 
photoinhibition 461, 468-474 
photon absorption 85 
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photon correlation length 289 
photophosphorylation 179-189, 560, 561, 651 
photorespiration 469 
photoselection 349, 413 
photosynthetic bacteria 15, 98, 102, 106, 107, 

197-232, 252-258, 338-342, 344-351, 
371-380, 382-388, 390-398, 603-619, 
620-630 

photosynthetic electron transport 31, 145 
photosynthetic membrane biogenesis 632-639, 

702 
photosynthetic membrane morphology 1-72, 

146-158, 603-618, 620-630 
photosynthetic unit 288, 633 
photosynthetic water oxidation 437-445, 

447-455 
photosystem I (see also P-700), assembly 492, 

493 
chlorophyll-proteins 101, 103, 108, 111, 275 
complexes 39, 40, 109-112, 160, 168-172, 

492 
core complex 40, 169 
cyanobacteria 118, 640, 647, 649, 650 
digitonin particles 553 
energy conversion 87 
fluorescence quenching 313 
L D peak 321 
lipolytic hydrolase effects 724 
localization on fracture faces 39, 40, 492, 

669 
localization in thylakoids 35, 39, 40, 517, 

669-671 
mobility 521 
of algae 273 
of Prochloron 276 
reaction center electron transfer 476-485, 

553 
reconstitution 39, 679 
relationship to phycobilisomes 266 
similarities with bacterial reaction centers 

208, 371 
siphoxanthin-chl a/b proteins 276 
subunit III 553-554 
surface charge 552 
Triton X-100 particles 553 

photosystem II 87 
antennae 112-115, 264 
bound antennae 44 
carotenoid oxidation 430 
charge separation 422 
chlorophyll a-proteins 273 
chlorophyll-proteins 101, 103, 108 
Cl~ requirement 573 
cofactors 457 
composition 112-115,158-168, 457-467 
core complex 35, 458 
cytochrome b-559 430 

distance to nearest neighbor 516, 518 
E F particles 34-38, 48, 671-672 
electrogenic reaction 423 
fluorescence 426 
fluorescence quenching 313 
freeze-fracture particles 32-63, 48, 55 
gene sequences 458 
in cyanobacteria 640, 644-649 
isolation 102 
L D spectrum 321 
lipolytic hydrolase effects 724 
localization in thylakoids 31, 34-38, 517, 

671-672 
mobility 521 
mutants 34, 671-672 
oxygen-evolving preparations 38 
oxygen evolving system 437-445, 447-455 
polypeptides 433, 434 
populations 335 
primary reactants 422 
Q B protein 380, 457-463, 468-474 
reaction center 422-435, 457 
reaction centers, bacteria vs. plants 

371-380, 383, 457 
reconstituted complexes 38 
redox potentials 426, 427 
relationship to phycobilisomes 56-58, 226, 

331 
siphonaxanthin-chl a/b proteins 275 
subunits 457, 458 

photosystem II to photosystem I ratio 53, 517 
photosystem II, 34 kDa protein 453 

47 kDa protein 380, 453, 596 
a-centers 37, 38, 304, 433 
a-ß heterogeneity 308 
photosystem II, ^-centers 37, 38 

phycobilin 244 
phycobiliproteins (see also phycobilisomes) 

117, 118, 241, 260-268, 327 
heterodimers 250 

phycobilisomes 260-268 
association with photosystem II 56-58, 

266-269, 644 
compared to chlorosomes 393 
emission 262 
hemispherical type 26 
isolation 261 
light regulation 18 
linker peptides 329 
molecular ecology 328 
polypeptides 241, 331 
reconstitution 266 
structure 18, 53, 262-266, 329 

phycocyanin 241, 280 
phycocyanobilin 327 
phycoerythrin 241, 280 
phycoerythrobilin 327 
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phycourobilin 327 
phylogenetic relationship of pigment proteins 

244, 248 
phytochrome 330 
phytoplankton 469 
phytyl side chains 375 
phytylation 690 
picosecond fluorescence decays 299 
picosecond laser pulse 310 
picosecond time-resolved techniques 333 
pigment arrangement 374 

terminal 264 
pigment-proteins (see also light-harvesting com

plexes), spectral analysis 99 
synthesis 611 

pigments, distribution among algae 16, 269 
Pisum 385 
plants, shade 24 
plastocyanin 145, 160, 168-179, 512, 518, 

547-559 
binding site at PS I 554 
chemical modification 550 
electron transfer site 550, 551 
inhibitors 550 
isoelectric point (pi) 552 
mobility 179, 518-524, 556 
molecular structure 171, 548, 549 
rate constants 552, 553 
reaction with cytochrome f 555 
synthesis 547 

plastocyanin to P-700 ratio 557 
plastoglobuli 1 
plastohydroquinone 441, 724 
plastoquinol 145, 173-176 
plastoquinone (see also quinone) 153-156, 

172, 177, 518, 531 
and cytochrome b6/f 174 
and photosystem II 158-164 
mobility 178, 179, 521-522, 695, 724 

plastosemiquinone 165, 429, 471 
polarized emission 322 
polypeptides, primary sequence of light-harvest

ing 382, 240 
Porphyridium 2, 26, 261, 331, 333, 334 
Portulacca 5 
post-translationally imported proteins 451 
potential, transmembrane 566 
primary acceptor, of bacteria 354 

of photosystem I 477 
of photosystem II 324 

primary donor, exciton trapping 325 
of photosystem I 477 

primary reactions in bacteria 338 
primary structure 248 
Prochloron 15, 19, 143, 276 
Prochlorophyta 276 
prolamellar bodies 70-72, 683-692 

Prosthecochloris 127 
protease digestion of L and M subunits 622 
protein acid-base dissociation groups 570 
protein synthesis associated with photoinhibi-

tion 473, 474 
protein targeting 638 
prothylakoids 70, 686, 687 
protochlorophyllide reductase 687 
proton buffering domains 571 
proton channel forming proteins 574 
proton currents, intramembrane 567 
proton gradient 573 

formation kinetics 563 
proton pump 536, 537 
proton translocation 184, 185, 529, 530, 544, 

560, 570 
protonic circuits 567 
protonmotive force 180, 184, 185 
PS I (see photosystem I) 
PS II (see photosystem II) 
PS IIa 37, 49, 304, 308, 433 
PS llß 37, 49, 308 
psbA gene for D l (QB) protein 385, 463 
psbD gene for D2 protein 463 
Pseudoanabaena 264 
puddle model 312 
pyrenoids 11-13 

Qpool 218,541 
Q-cycle 174-176,534-537,542 
Q 2 432 

Q400 432 

Q A 2 2 8 , 4 2 4 , 4 2 5 , 4 2 7 

Q B 379 ,433 ,457-462 ,471 

Qß-protein 162-165, 468-474, 596, 597 

herbicides 460 
mutations 462, 465 
turnover 461, 468-474 

Qc 541 

Q L 431 

quantum efficiency 162 
quantum yield 338 
quinol-cytochrome c oxidoreductases 208, 496 
quinone (see also plastoquinone) 121, 122, 

540, 541 

quinone binding 2 0 9 , 2 3 1 , 3 8 2 , 6 2 5 
quinone radical 471 
quinone-iron complex 358 
Q Z 541 

radical formation 595 
radical pair 339, 341 
RC-H polypeptide 636 
RC-L, organization of structural gene 633 
R C - M , organization of structural gene 633 
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reaction center, biochemistry 127 
cytochrome c 220 

four types 371 
general reaction scheme 205 
lake model 313 

electron transfer events 144,161 
generated membrane potential 203, 206 
organization 85 
to phycobilisome ratio 56-58, 267 
topography 124, 125 

reactions centers of bacteria 107, 205, 218, 
354, 357, 371-380, 382, 621 
of green bacteria 371, 394, 

reaction center I complex 488, 489 
reaction center I composition 152, 487-494 
reaction center I organization 168-170, 

476-485 
reaction center II composition 152, 457-466 
reaction center II, charge separation 162, 

422-434 
manganese depletion 35, 167 

reaction center-bCi complex cycle 211 
reaction center-phycobilisome coupling 56-58, 

267 
reconstitution of membrane complexes 38, 39, 

613, 672, 675-681, 722 
redox center orientation in bacterial mem

branes 346-348, 351 
redox centers in reaction centers of bacteria 

344 
redox chain control 561 
redox potentials, theory and conventions 204 
reducing equivalents 219 
reducing power sources 212 
relocalization 286 
repair of photodamage 474 
repetitive streak cameras 333 
resonance energy transfer 92 
respiration in mitochondria 496 
reverse electron flow 164, 530 
Rhodeila 26 
Rhodophyceae 6 
Rhodophyta 143,270,281,282,284 
Rhodopseudomonas 118, 119, 121, 123, 125, 

197-232, 246, 254, 256, 313, 344, 355, 371-
381, 383-389, 497, 539, 545, 604, 605, 610-618 

Rhodospirillum 99, 125, 219, 246, 253, 313, 
471, 610-618 

ribulose bisphosphate carboxylase 11 
Rieske FeS center 173, 174, 498, 499 
Rieske FeS protein 127, 500-502, 540, 649 

gene 503 
structure 504-605 

rise time of fluorescence 306, 334 
rod elements of chlorosomes 610, 618 
rotary shadowed replicas 666 
R Y D M R 364-367 

S-states 166-168, 437 
SAN-9785 24 
Sargassum 60 
Scenedesmus 685, 689 
secondary electron transfer 355 
secondary quinone acceptor 354 
semi-aerobic induction 609 
sensitizers 331 
sequence homology 248 
signal II 165,166,170,428 
single site catalysis 589 
single turnover resolution 564 
single-photon timing 299, 333 
siphonaxanthin-chl a/b proteins 275 
siphonoxanthin 271, 272 
slow component lifetimes 302 
slow electrogenic phase 528-529 
sodium dodecyl sulfate 104, 129 
space charge density 654 
special pair 360 
Spermothamnion 26, 53 
spillover 303 
spin axes 402, 406 
spin polarization 483 
spin-probes 724 
spinach 59, 153, 173, 183 
spirilloxanthin 125 
Spirodela 684 
staining, tetramethylbenzidine 641 
State I-State II transitions 64-66, 115, 657, 

658 
steady-state coupling 560-561 
Stern layer 654 
stress 472, 473 
stroma 10-14, 665 

membranes 20-24, 147, 305 
strong coupling 292, 333 
structure analysis, x-ray 328, 372 
structure, bacterial reaction center 345 

cyt b/Ci complex 345 
primary 240, 242, 328, 348 
secondary 346, 351 
three dimensional of proteins 240, 244 
topographical 504 

subchloroplast fractions 696 
surface charge of thylakoids 154-158, 

653-664, 698, 700 
sulfide, electron transport to reaction center 

215, 216 
sulfide oxidation 217 
sulfolipids (see diacylsulfoquinovosylglycerol) 
sulfur compounds, reduced 215 

transport 220 
sulfur-oxidizing enzymes 218 
sulphoquinovosyldiacylglycerol (see diacylsulfo

quinovosylglycerol) 
sunlight 86 
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superexchanges 358 
supramolecular organization of thylakoids 

1-7, 603-618, 675-681 
model 49 

surface potential 653 
Synechococcus 17 
Synechocystis 263 
systematic organization of algae 5 

T A D M R 401,410 
temperature dependence of fluorescence 307 
temperature-induced changes in membranes 

66-70 
terminal polypeptide antibodies 265 
tertiary electron transfer 355 
tetranitromethane 551 
tetraphenyl boron 431 
Thiocapsa 122 
thioether bonds 327 
thioredoxin 186, 590 
thiosulfate oxidation 217 
thylakoid, architecture 1-72, 513-516, 

603-618, 665-673 
arrangement in chloroplasts 6, 14-30 
fragments 299, 305, 306 
frets 515 
freeze-fractured 1-72, 603-618, 665-673 
freshly prepared 573 
frozen and thawed 573 
lipids 683-691, 693-704, 706-711, 713-724 
location of cyt b 6 /f 40 
marginal regions 152, 722 
nomenclature 2, 22-23 
of chromophytan algae 28-30 
of Chrysophyceae 29 
of cryptomonads 28 
of cyanelles 53-58 
of cyanobacteria 53-58 
of diatoms 28-29 
of dinoflagellates 29-30 
of euglenoids 25 
of green algae 25 
of oxygen-evolving prokaryotes 16-19 
of Prochloron 51-52 
of red algae 53-58 
of Xanthophyceae 29 
supramolecular organization 30-61, 

603-618, 665-673 
protein density 516-518 

thylakoids, brown algae 28-29 
endogenous buffering capacity 563 
girdle 26 
grana development 20-22 
grana three dimensional organization 19-22, 

146-149 
stacking, light intensity 23 

stroma development 20-22 
stroma three dimensional organization 

19-20, 63 
surface, inner 451 

tightly-bound nucleotides 589-592 
time-resolved spectrum 305 
tobacco 3 
Tolypothrix 263 
topology of antenna pigments 317 
topology of membranes 281, 620-630 
transient coupling 563-564 
transient states 338, 342 
transmembrane electrochemical potential 145, 

170, 176, 180, 181, 184, 187 
transport, M g + + control 229 
trapping of excitation energy 286, 293 
triazines 164, 165, 595 
triplet states 292, 293, 310, 340, 356, 363, 395, 

400-421, 482 
triplet-minus-singlet absorbance difference 

402, 409-412 
triplet-minus-singlet spectra 417-418 
Tris, alkaline release of proteins 448 
Triton X-100 106, 129 
tunneling of electrons 95 
turnover of Q B protein 471, 472 
two electron gate 163, 174 

ubiquinone 119, 178, 372 
unstacking in vitro 61-63, 149, 660, 616 
urea 595 

van der Waals attractive forces 657 
variable fluorescence yield 306 
vesicles, inside-out 305, 448 

right-side-out 448 
violaxanthin-chl a/cl/c2-protein 277 
violaxanthin-chl a/chl cl/c2 complex 278 
violaxanlhin-chlorophyll a/cl +c2-complex 

116 

vitamin C 601 

water oxidation site 453 
water stres effects on photoinhibition 468 
water-splitting enzymes 37, 447-455 

X-ray analysis of proteins 330, 357, 371, 624 
X a 432 

Z 428,429 
Z + 165,429,440 
Z-scheme 144, 145 
Zea 23 
zero field splitting parameters 403, 404 
zeta-potential 655 


