32 research outputs found

    Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells

    Get PDF
    Purpose: Doxorubicin is a first-line chemotherapeutic for breast cancer; however, it is associated with severe side effects to non-tumoral tissues. Thus, it is necessary to develop new therapeutic combinations to improve doxorubicin effects at lower concentration of the drug associated with protective effects for non-tumoral cells. In this work, we evaluated whether the plant-derived flavonoid quercetin may represent such an agent. Methods: The effects of doxorubicin and quercetin as single agents and in combination were evaluated on cell survival, DNA and protein synthesis, oxidative stress, migratory potential and cytoskeleton and nucleus structure in highly invasive and poorly invasive human breast cancer cells in comparison with non-tumoral human breast cells. Results: In human breast cancer cells, quercetin potentiated antitumor effects of doxorubicin specifically in the highly invasive breast cancer cells and attenuated unwanted cytotoxicity to non-tumoral cells. Quercetin interfered with cell metabolism, GST activity, cytoskeleton and invasive properties specifically in breast tumor cells compared with non-tumoral breast cells. Doxorubicin induced DNA damage in tumor and non-tumor cells; however, quercetin reduced this damage only in non-tumoral cells, thus offering a protective effect for these cells. Quercetin also induced polynucleation in aggressive tumor cells, which was maintained in combination with doxorubicin. Conclusions: By combining quercetin with doxorubicin, an increase in doxorubicin effects was obtained specifically in the highly invasive breast cancer cells, while in non-tumoral cells quercetin reduced doxorubicin cytotoxic side effects. Thus, quercetin associated with doxorubicin demonstrated very promising properties for developing chemotherapeutics combinations for the therapy of breast cance

    Editorial: Use of 3D Models in Drug Development and Precision Medicine - Advances and Outlook

    Get PDF
    Three-dimensional (3D) in vitro models in the drug development pipeline can help selecting the most promising and safe drug candidates at the pre-clinical stage, prior to clinical trials, reducing and sometimes even replacing animal studies in accordance with the “3Rs (Reduction, Refinement and Replacement) principle”

    Frequency Doubling Nanocrystals for Cancer Theranostics

    Full text link
    A novel bio-photonics approach based on the nonlinear optical process of second harmonic generation by non-centrosymmetric nanoparticles is presented and demonstrated on malignant human cell lines. The proposed method allows to directly interact with DNA in absence of photosensitizing molecules, to enable independent imaging and therapeutic modalities switching between the two modes of operation by simply tuning the excitation laser wavelength, and to avoid any risk of spontaneous activation by any natural or artificial light source.Comment: 16 pages, 7 figure

    Simultaneous Multi-Harmonic Imaging of Nanoparticles in Tissues for Increased Selectivity

    Full text link
    We investigate the use of Bismuth Ferrite (BFO) nanoparticles for tumor tissue labelling in combination with infrared multi-photon excitation at 1250 nm. We report the efficient and simultaneous generation of second and third harmonic by the nanoparticles. On this basis, we set up a novel imaging protocol based on the co-localization of the two harmonic signals and demonstrate its benefits in terms of increased selectivity against endogenous background sources in tissue samples. Finally, we discuss the use of BFO nanoparticles as mapping reference structures for correlative light-electron microscopy.Comment: 19 pages, 6 figure

    Assessing the dynamics of organic aerosols over the North Atlantic Ocean

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 45476, doi:10.1038/srep45476.The influence of aerosols on climate is highly dependent on the particle size distribution, concentration, and composition. In particular, the latter influences their ability to act as cloud condensation nuclei, whereby they impact cloud coverage and precipitation. Here, we simultaneously measured the concentration of aerosols from sea spray over the North Atlantic on board the exhaust-free solar-powered vessel “PlanetSolar”, and the sea surface physico-chemical parameters. We identified organic-bearing particles based on individual particle fluorescence spectra. Organic-bearing aerosols display specific spatio-temporal distributions as compared to total aerosols. We propose an empirical parameterization of the organic-bearing particle concentration, with a dependence on water salinity and sea-surface temperature only. We also show that a very rich mixture of organic aerosols is emitted from the sea surface. Such data will certainly contribute to providing further insight into the influence of aerosols on cloud formation, and be used as input for the improved modeling of aerosols and their role in global climate processes.We gratefully acknowledge the financial support by the H. Dudley Wright and the Henri Moser Foundations, the Rector’s Office and the Institute for Environmental Sciences at the University of Geneva, as well as a generous anonymous donator

    Simultaneous Quantification of 16 Bisphenol Analogues in Food Matrices

    No full text
    Exposure to bisphenol analogues can occur in several ways throughout the food production chain, with their presence at higher concentrations representing a risk to human health. This study aimed to develop effective analytical methods to simultaneously quantify BPA and fifteen bisphenol analogues (i.e., bisphenol AF, bisphenol AP, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, bisphenol TMC, and tetramethyl bisphenol F) present in canned foods and beverages. Samples of foods and beverages available in the Swiss and EU markets (n = 22), including canned pineapples, ravioli, and beer, were prepared and analyzed using QuEChERS GC-MS. The quantification method was compared to a QuEChERS LC-MS/MS analysis. This allowed for the selective and efficient simultaneous quantitative analysis of bisphenol analogues. Quantities of these analogues were present in 20 of the 22 samples tested, with the most frequent analytes at higher concentrations: BPA and BPS were discovered in 78% and 48% of cases, respectively. The study demonstrates the robustness of QuEChERS GC-MS for determining low quantities of bisphenol analogues in canned foods. However, further studies are necessary to achieve full knowledge of the extent of bisphenol contamination in the food production chain and its associated toxicity

    Real-time monitoring of bacterial and organic pollution in a water stream by fluorescence depletion spectroscopy

    No full text
    We demonstrate an approach for a real-time, consumable-free optical system operating on a liquid jet which can be easily derived from the water distribution infrastructure. We apply a pump-probe scheme based on the acquisition and nanosecond manipulation of UV-excited fluorescence to increase the selective identification of bacterial against organic pollutants in water
    corecore