302 research outputs found

    On random topological Markov chains with big images and preimages

    Full text link
    We introduce a relative notion of the 'big images and preimages'-property for random topological Markov chains. This then implies that a relative version of the Ruelle-Perron-Frobenius theorem holds with respect to summable and locally Hoelder continuous potentials.Comment: Corrected and extended version of the article published in Stochastics and Dynamics 201

    XMM-Newton EPIC Observation of SMC SNR 0102-72.3

    Get PDF
    Results from observations of the young oxygen-rich supernova remnant SNR 0102-72.3 in the Small Magellanic Cloud during the calibration phase of the XMM-Newton Observatory are presented. Both EPIC-PN and MOS observations show a ringlike structure with a radius of ~15'' already known from Einstein, ROSAT and Chandra observations. Spectra of the entire SNR as well as parts in the eastern half were analyzed confirming shocked hot plasma in non-uniform ionization stages as the origin of the X-ray emission. The spectra differ in the northeastern and the southeastern part of the X-ray ring, showing emission line features of different strength. The temperature in the northeastern part is significantly higher than in the southeast, reflected by the lines of higher ionization stages and the harder continuum. Comparison to radio data shows the forward shock of the blast wave dominating in the northern part of the SNR, while the southern emission is most likely produced by the recently formed reverse shock in the ejecta. In the case of the overall spectrum of SNR 0102-72.3, the two-temperature non-equilibrium ionization model is more consistent with the data in comparison to the single plane-parallel shock model. The structure of SNR 0102-72.3 is complex due to variations in shock propagation leading to spatially differing X-ray spectra

    Mesoscopic model for DNA G-quadruplex unfolding

    Full text link
    [EN] Genomes contain rare guanine-rich sequences capable of assembling into four-stranded helical structures, termed G-quadruplexes, with potential roles in gene regulation and chromosome stability. Their mechanical unfolding has only been reported to date by all-atom simulations, which cannot dissect the major physical interactions responsible for their cohesion. Here, we propose a mesoscopic model to describe both the mechanical and thermal stability of DNA G-quadruplexes, where each nucleotide of the structure, as well as each central cation located at the inner channel, is mapped onto a single bead. In this framework we are able to simulate loading rates similar to the experimental ones, which are not reachable in simulations with atomistic resolution. In this regard, we present single-molecule force-induced unfolding experiments by a high-resolution optical tweezers on a DNA telomeric sequence capable of adopting a G-quadruplex conformation. Fitting the parameters of the model to the experiments we find a correct prediction of the rupture-force kinetics and a good agreement with previous near equilibrium measurements. Since G-quadruplex unfolding dynamics is halfway in complexity between secondary nucleic acids and tertiary protein structures, our model entails a nanoscale paradigm for non-equilibrium processes in the cell.Work supported by the Spanish Ministry of Economy and Competitiveness (MINECO), grant No. FIS2014-55867, co-financed by FEDER funds. We also thank the support of the Aragon Government and Fondo Social Europeo to FENOL group. Work in J.R.A.-G. laboratory was supported by a grant from MINECO, No. MAT2015-71806-R).Bergues-Pupo, A.; Gutiérrez, I.; Arias-Gonzalez, JR.; Falo, F.; Fiasconaro, A. (2017). Mesoscopic model for DNA G-quadruplex unfolding. Scientific Reports. 7:1-13. https://doi.org/10.1038/s41598-017-10849-2S1137Arias-Gonzalez, J. R. Single-molecule portrait of DNA and RNA double helices. Integr. Biol. 6, 904 (2014).Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402 (2006).Lam, E. Y., Beraldi, D., Tannahill, D. & Balasubramanian, S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 4, 1796 (2013).Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593 (2002).Endoh, T. & Sugimoto, N. Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Sci. Rep. 6, 1 (2016).HÀnsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 18, 279 (2017).de Messieres, M., Chang, J. C., Brawn-Cinani, B. & La Porta, A. Single-molecule study of G-quadruplex disruption using dynamic force spectroscopy. Phys. Rev. Lett. 109, 058101 (2012).Koirala, D. et al. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat. Chem. 3, 782 (2011).Long, X. et al. Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res. 41, 2746 (2013).Ghimire, C. et al. Direct Quantification of Loop Interaction and pi-pi Stacking for G-Quadruplex Stability at the Submolecular Level. J. Am. Chem. Soc. 136, 15544 (2014).Garavís, M. et al. Mechanical Unfolding of Long Human Telomeric RNA (TERRA). Chem. Commun. 49, 6397 (2013).Fonseca Guerra, C., Zijlstra, H., Paragi, G. & Bickelhaupt, F. M. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Chemistry-A European Journal 17, 12612 (2011).Yurenko, Y. P., Novotn, J., Sklen, V. & Marek, R. Exploring non-covalent interactions in guanine-and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys. Chem. Chem. Phys. 16, 2072 (2014).Poudel, L. et al. Implication of the solvent effect, metal ions and topology in the electronic structure and hydrogen bonding of human telomeric G-quadruplex DNA. Phys. Chem. Chem. Phys. 18, 21573 (2016).Li, M. H., Luo, Q., Xue, X. G. & Li, Z. S. Toward a full structural characterization of G-quadruplex DNA in aqueous solution: Molecular dynamics simulations of four G-quadruplex molecules. J. Mol. Struct-Theochem. 952, 96 (2010).Islam, B. et al. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res. 41, 2723 (2013).Stadlbauer, P., Krepl, M., Cheatham, T. E., Koca, J. & Sponer, J. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 41, 7128 (2013).Li, H., Cao, E. & Gisler, T. Force-induced unfolding of human telomeric G-quadruplex: a steered molecular dynamics simulation study. Biochem. Bioph. Res. Co. 379, 70 (2009).Yang, C., Jang, S. & Pak, Y. Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. J. Chem. Phys. 135, 225104 (2011).Bergues-Pupo, A. E., Arias-Gonzalez, J. R., Morón, M. C., Fiasconaro, A. & Falo, F. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 43, 7638 (2015).Linak, M. C., Tourdot, R. & Dorfman, K. D. Moving beyond Watson-Crick models of coarse grained DNA dynamics. J. Chem Phys. 135, 205102 (2011).Rebi, M., Mocci, F., Laaksonen, A. & Ulin, J. Multiscale simulations of human telomeric G-quadruplex DNA. J. Phys. Chem. B 119, 105 (2014).Stadlbauer, P. et al. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J. Chem. Theory Comput. 12, 6077 (2016).Parkinson, G. N., Lee, M. P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876 (2002).Bhattacharya, D., Arachchilageand, G. M. & Basu, S. Metal Cations in G-Quadruplex Folding and Stability. Frontiers in Chemistry 4, 38 (2016).de Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B. & Ritort, F. A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophys. J. 108, 2854 (2015).Smith, S. B., Cui, Y. & Bustamante, C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 361, 134 (2003).Mergny, J. L., Phan, A. T. & Lacroix, L. Following G-quartet formation by UV-spectroscopy. FEBS letters 435, 74 (1998).Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187 (1977).Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A. & Rosenberg, J. M. The weighted histogram analysis method for free-energy calculations on biomolecules I. The method. J. Comput. Chem. 13, 1011 (1992).Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541 (1997).Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).Friddle, R. W., Noy, A. & De Yoreo, J. J. Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. 109, 13573 (2012)

    Evidence that the multiflorine‐derived substituted quinazolidine 55P0251 augments insulin secretion and lowers blood glucose via antagonism at α2‐adrenoceptors in mice

    Get PDF
    To investigate the mechanism of action of 55P0251, a novel multiflorine‐derived substituted quinazolidine that augments insulin release and lowers blood glucose in rodents, but does not act via mechanisms addressed by any antidiabetic agent in clinical use.Materials and MethodsUsing male mice, we determined the effects of 55P0251 on glucose tolerance, insulin secretion from isolated islets and blood oxygen saturation, including head‐to‐head comparison of 55P0251 to its inverted enantiomer 55P0250, as well as to other anti‐hyperglycaemic multiflorine derivatives discovered in our programme.Results55P0251 was clearly superior to its inverted enantiomer in the glucose tolerance test (area under the curve: 11.3 mg/kg 55P0251, 1.19 ± 0.04 min*mol/L vs 55P0250, 1.80 ± 0.04 min*mol/L; P P P ConclusionsOur findings suggest that 55P0251 and related multiflorine derivatives are to be categorized as α2‐adrenoceptor antagonists with potential to lower blood glucose by blocking α2A‐adrenoceptors on pancreatic ÎČ cells.</p

    Future circular collider injection and extraction kicker topologies and solid state generators

    Get PDF
    A 100 TeV center-of-mass energy frontier proton collider, in a new tunnel of 80–100 km circumference, is a central part of CERN’s Future Circular Colliders (FCC) design study. The designs of the injection and extraction systems of the FCC are initially based upon the parameters of the injection and extraction systems of the Large Hadron Collider and a preliminary study of the FCC beam optics and lattice. The injection and, in particular, the extraction systems of the FCC have to be highly reliable. In order to achieve high reliability, solid state switches will be used for the generators of the injection and extraction systems. This paper discusses topologies of these kicker systems, which are presently under consideration

    Organometallic indolo[3,2-c]quinolines versus indolo[3,2-d]benzazepines: synthesis, structural and spectroscopic characterization, and biological efficacy

    Get PDF
    The synthesis of ruthenium(II) and osmium(II) arene complexes with the closely related indolo[3,2-c]quinolines N-(11H-indolo[3,2-c]quinolin-6-yl)-ethane-1,2-diamine (L1) and Nâ€Č-(11H-indolo[3,2-c]quinolin-6-yl)-N,N-dimethylethane-1,2-diamine (L2) and indolo[3,2-d]benzazepines N-(7,12-dihydroindolo-[3,2-d][1]benzazepin-6-yl)-ethane-1,2-diamine (L3) and Nâ€Č-(7,12-dihydroindolo-[3,2-d][1]benzazepin-6-yl)-N,N-dimethylethane-1,2-diamine (L4) of the general formulas [(η6-p-cymene)MII(L1)Cl]Cl, where M is Ru (4) and Os (6), [(η6-p-cymene)MII(L2)Cl]Cl, where M is Ru (5) and Os (7), [(η6-p-cymene)MII(L3)Cl]Cl, where M is Ru (8) and Os (10), and [(η6-p-cymene)MII(L4)Cl]Cl, where M is Ru (9) and Os (11), is reported. The compounds have been comprehensively characterized by elemental analysis, electrospray ionization mass spectrometry, spectroscopy (IR, UV–vis, and NMR), and X-ray crystallography (L1·HCl, 4·H2O, 5, and 9·2.5H2O). Structure–activity relationships with regard to cytotoxicity and cell cycle effects in human cancer cells as well as cyclin-dependent kinase (cdk) inhibition and DNA intercalation in cell-free settings have been established. The metal-free indolo[3,2-c]quinolines inhibit cancer cell growth in vitro, with IC50 values in the high nanomolar range, whereas those of the related indolo[3,2-d]benzazepines are in the low micromolar range. In cell-free experiments, these classes of compounds inhibit the activity of cdk2/cyclin E, but the much higher cytotoxicity and stronger cell cycle effects of indoloquinolines L1 and 7 are not paralleled by a substantially higher kinase inhibition compared with indolobenzazepines L4 and 11, arguing for additional targets and molecular effects, such as intercalation into DNA

    XMM-Newton observation of the Tycho Supernova Remnant

    Get PDF
    We present the observation of the Tycho supernova remnant obtained with the EPIC and RGS instruments onboard the XMM-Newton satellite. We compare images and azimuthally averaged radial profiles in emission lines from different elements (silicon and iron) and different transition lines of iron (Fe L and Fe K). While the Fe XVII L line and Si XIII K line images are globally spatially coincident, the Fe K emission clearly peaks at a smaller radius, indicating a higher temperature toward the reverse shock. This is qualitatively the profile expected when the reverse shock, after travelling through the outer power-law density profile, has entered the central plateau of the ejecta. The high energy continuum map has an overall smooth distribution, with a similar extent to the radio emission. Its radial profile peaks further out than the lines emission. Brighter and harder continuum regions are observed with a rough bipolar symmetry in the eastern and western edges. The spectral analysis of the southeastern knots supports spatial variations of the relative abundance of silicon and iron, which implies an incomplete mixing of the silicon and iron layers.Comment: 6 pages, 6 figures, accepted for publication in A&A Special Letters Issue on XMM-Newto
    • 

    corecore