14 research outputs found

    Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation

    Get PDF
    The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC–CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal‐like hiPSC‐CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC‐CMs maturity, spanning from long‐term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.Fil: Lodola, Francesco. Università degli Studi di Milano; ItaliaFil: de Giusti, Verónica Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Maniezzi, Claudia. Università degli Studi di Milano; ItaliaFil: Martone, Daniele. Università degli Studi di Milano; ItaliaFil: Stadiotti, Ilaria. Università degli Studi di Milano; ItaliaFil: Sommariva, Elena. Università degli Studi di Milano; ItaliaFil: Maione, Angela Serena. Università degli Studi di Milano; Itali

    Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation

    Get PDF
    The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC–CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.Centro de Investigaciones Cardiovasculare

    MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy

    Get PDF
    Diagnosis of Arrhythmogenic CardioMyopathy (ACM) is challenging and often late after disease onset. No circulating biomarkers are available to date. Given their involvement in several cardiovascular diseases, plasma microRNAs warranted investigation as potential non-invasive diagnostic tools in ACM. We sought to identify circulating microRNAs differentially expressed in ACM with respect to Healthy Controls (HC) and Idiopathic Ventricular Tachycardia patients (IVT), often in differential diagnosis. ACM and HC subjects were screened for plasmatic expression of 377 microRNAs and validation was performed in 36 ACM, 53 HC, 21 IVT. Variable importance in data partition was estimated through Random Forest analysis and accuracy by Receiver Operating Curves. Plasmatic miR-320a showed 0.53\u2009\ub1\u20090.04 fold expression difference in ACM vs. HC (p\u2009<\u20090.01). A similar trend was observed when comparing ACM (n\u2009=\u200913) and HC (n\u2009=\u200917) with athletic lifestyle, a ACM precipitating factor. Importantly, ACM patients miR-320a showed 0.78\u2009\ub1\u20090.05 fold expression change vs. IVT (p\u2009=\u20090.03). When compared to non-invasive ACM diagnostic parameters, miR-320a ranked highly in discriminating ACM vs. IVT and it increased their accuracy. Finally, miR-320a expression did not correlate with ACM severity. Our data suggest that miR-320a may be considered a novel potential biomarker of ACM, specifically useful in ACM vs. IVT differentiation

    Cardiac Biomarkers and Autoantibodies in Endurance Athletes: Potential Similarities with Arrhythmogenic Cardiomyopathy Pathogenic Mechanisms

    No full text
    The “Extreme Exercise Hypothesis” states that when individuals perform training beyond the ideal exercise dose, a decline in the beneficial effects of physical activity occurs. This is due to significant changes in myocardial structure and function, such as hemodynamic alterations, cardiac chamber enlargement and hypertrophy, myocardial inflammation, oxidative stress, fibrosis, and conduction changes. In addition, an increased amount of circulating biomarkers of exercise-induced damage has been reported. Although these changes are often reversible, long-lasting cardiac damage may develop after years of intense physical exercise. Since several features of the athlete’s heart overlap with arrhythmogenic cardiomyopathy (ACM), the syndrome of “exercise-induced ACM” has been postulated. Thus, the distinction between ACM and the athlete’s heart may be challenging. Recently, an autoimmune mechanism has been discovered in ACM patients linked to their characteristic junctional impairment. Since cardiac junctions are similarly impaired by intense physical activity due to the strong myocardial stretching, we propose in the present work the novel hypothesis of an autoimmune response in endurance athletes. This investigation may deepen the knowledge about the pathological remodeling and relative activated mechanisms induced by intense endurance exercise, potentially improving the early recognition of whom is actually at risk

    Excess TGF-β1 Drives Cardiac Mesenchymal Stromal Cells to a Pro-Fibrotic Commitment in Arrhythmogenic Cardiomyopathy

    No full text
    Arrhythmogenic Cardiomyopathy (ACM) is characterized by the replacement of the myocardium with fibrotic or fibro-fatty tissue and inflammatory infiltrates in the heart. To date, while ACM adipogenesis is a well-investigated differentiation program, ACM-related fibrosis remains a scientific gap of knowledge. In this study, we analyze the fibrotic process occurring during ACM pathogenesis focusing on the role of cardiac mesenchymal stromal cells (C-MSC) as a source of myofibroblasts. We performed the ex vivo studies on plasma and right ventricular endomyocardial bioptic samples collected from ACM patients and healthy control donors (HC). In vitro studies were performed on C-MSC isolated from endomyocardial biopsies of both groups. Our results revealed that circulating TGF-β1 levels are significantly higher in the ACM cohort than in HC. Accordingly, fibrotic markers are increased in ACM patient-derived cardiac biopsies compared to HC ones. This difference is not evident in isolated C-MSC. Nevertheless, ACM C-MSC are more responsive than HC ones to TGF-β1 treatment, in terms of pro-fibrotic differentiation and higher activation of the SMAD2/3 signaling pathway. These results provide the novel evidence that C-MSC are a source of myofibroblasts and participate in ACM fibrotic remodeling, being highly responsive to ACM-characteristic excess TGF-β1

    Cyclophilin A in Arrhythmogenic Cardiomyopathy Cardiac Remodeling

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by the progressive substitution of functional myocardium with noncontractile fibro-fatty tissue contributing to ventricular arrhythmias and sudden cardiac death. Cyclophilin A (CyPA) is a ubiquitous protein involved in several pathological mechanisms, which also characterize ACM (i.e., fibrosis, inflammation, and adipogenesis). Nevertheless, the involvement of CyPA in ACM cardiac remodeling has not been investigated yet. Thus, we first evaluated CyPA expression levels in the right ventricle (RV) tissue specimens obtained from ACM patients and healthy controls (HC) by immunohistochemistry. Then, we took advantage of ACM- and HC-derived cardiac mesenchymal stromal cells (C-MSC) to assess CyPA modulation during adipogenic differentiation. Interestingly, CyPA was more expressed in the RV sections obtained from ACM vs. HC subjects and positively correlated with the adipose replacement extent. Moreover, CyPA was upregulated at early stages of C-MSC adipogenic differentiation and was secreted at higher level over time in ACM- derived C-MSC. Our study provides novel ex vivo and in vitro information on CyPA expression in ACM remodeling paving the way for future C-MSC-based mechanistic and therapeutic investigations

    Excess TGF-β1 Drives Cardiac Mesenchymal Stromal Cells to a Pro-Fibrotic Commitment in Arrhythmogenic Cardiomyopathy

    No full text
    Arrhythmogenic Cardiomyopathy (ACM) is characterized by the replacement of the myocardium with fibrotic or fibro-fatty tissue and inflammatory infiltrates in the heart. To date, while ACM adipogenesis is a well-investigated differentiation program, ACM-related fibrosis remains a scientific gap of knowledge. In this study, we analyze the fibrotic process occurring during ACM pathogenesis focusing on the role of cardiac mesenchymal stromal cells (C-MSC) as a source of myofibroblasts. We performed the ex vivo studies on plasma and right ventricular endomyocardial bioptic samples collected from ACM patients and healthy control donors (HC). In vitro studies were performed on C-MSC isolated from endomyocardial biopsies of both groups. Our results revealed that circulating TGF-β1 levels are significantly higher in the ACM cohort than in HC. Accordingly, fibrotic markers are increased in ACM patient-derived cardiac biopsies compared to HC ones. This difference is not evident in isolated C-MSC. Nevertheless, ACM C-MSC are more responsive than HC ones to TGF-β1 treatment, in terms of pro-fibrotic differentiation and higher activation of the SMAD2/3 signaling pathway. These results provide the novel evidence that C-MSC are a source of myofibroblasts and participate in ACM fibrotic remodeling, being highly responsive to ACM-characteristic excess TGF-β1

    Clinical and Molecular Data Define a Diagnosis of Arrhythmogenic Cardiomyopathy in a Carrier of a Brugada-Syndrome-Associated PKP2 Mutation

    No full text
    Plakophilin-2 (PKP2) is the most frequently mutated desmosomal gene in arrhythmogenic cardiomyopathy (ACM), a disease characterized by structural and electrical alterations predominantly affecting the right ventricular myocardium. Notably, ACM cases without overt structural alterations are frequently reported, mainly in the early phases of the disease. Recently, the PKP2 p.S183N mutation was found in a patient affected by Brugada syndrome (BS), an inherited arrhythmic channelopathy most commonly caused by sodium channel gene mutations. We here describe a case of a patient carrier of the same BS-related PKP2 p.S183N mutation but with a clear diagnosis of ACM. Specifically, we report how clinical and molecular investigations can be integrated for diagnostic purposes, distinguishing between ACM and BS, which are increasingly recognized as syndromes with clinical and genetic overlaps. This observation is fundamentally relevant in redefining the role of genetics in the approach to the arrhythmic patient, progressing beyond the concept of "one mutation, one disease", and raising concerns about the most appropriate approach to patients affected by structural/electrical cardiomyopathy. The merging of genetics, electroanatomical mapping, and tissue and cell characterization summarized in our patient seems to be the most complete diagnostic algorithm, favoring a reliable diagnosis

    Neuropeptide Y promotes adipogenesis of human cardiac mesenchymal stromal cells in arrhythmogenic cardiomyopathy

    No full text
    Arrhythmogenic Cardiomyopathy (AC) is a familial cardiac disease, mainly caused by mutations in desmosomal genes. AC hearts show fibro-fatty myocardial replacement, which favors stress-related life-threatening arrhythmias, predominantly in the young and athletes. AC lacks effective therapies, as its pathogenesis is poorly understood. Recently, we showed that cardiac Mesenchymal Stromal Cells (cMSCs) contribute to adipose tissue in human AC hearts, although the underlying mechanisms are still unclear
    corecore