1,115 research outputs found
Galactic cosmic rays on extrasolar Earth-like planets: II. Atmospheric implications
(abridged abstract) Theoretical arguments indicate that close-in terrestial
exoplanets may have weak magnetic fields. As described in the companion article
(Paper I), a weak magnetic field results in a high flux of galactic cosmic rays
to the top of the planetary atmosphere. We investigate effects that may result
from a high flux of galactic cosmic rays both throughout the atmosphere and at
the planetary surface. Using an air shower approach, we calculate how the
atmospheric chemistry and temperature change under the influence of galactic
cosmic rays for Earth-like (N_2-O_2 dominated) atmospheres. We evaluate the
production and destruction rate of atmospheric biosignature molecules. We
derive planetary emission and transmission spectra to study the influence of
galactic cosmic rays on biosignature detectability. We then calculate the
resulting surface UV flux, the surface particle flux, and the associated
equivalent biological dose rates. We find that up to 20% of stratospheric ozone
is destroyed by cosmic-ray protons. The reduction of the planetary ozone layer
leads to an increase in the weighted surface UV flux by two orders of magnitude
under stellar UV flare conditions. The resulting biological effective dose rate
is, however, too low to strongly affect surface life. We also examine the
surface particle flux: For a planet with a terrestrial atmosphere, a reduction
of the magnetic shielding efficiency can increase the biological radiation dose
rate by a factor of two. For a planet with a weaker atmosphere (with a surface
pressure of 97.8 hPa), the planetary magnetic field has a much stronger
influence on the biological radiation dose, changing it by up to two orders of
magnitude.Comment: 14 pages, 9 figures, published in A&
Galactic cosmic rays on extrasolar Earth-like planets I. Cosmic ray flux
(abridged abstract) Theoretical arguments indicate that close-in terrestial
exoplanets may have weak magnetic fields, especially in the case of planets
more massive than Earth (super-Earths). Planetary magnetic fields, however,
constitute one of the shielding layers that protect the planet against
cosmic-ray particles. In particular, a weak magnetic field results in a high
flux of Galactic cosmic rays that extends to the top of the planetary
atmosphere. We wish to quantify the flux of Galactic cosmic rays to an
exoplanetary atmosphere as a function of the particle energy and of the
planetary magnetic moment. We numerically analyzed the propagation of Galactic
cosmic-ray particles through planetary magnetospheres. We evaluated the
efficiency of magnetospheric shielding as a function of the particle energy (in
the range 16 MeV E 524 GeV) and as a function of the planetary
magnetic field strength (in the range 0 {M} 10
). Combined with the flux outside the planetary magnetosphere, this
gives the cosmic-ray energy spectrum at the top of the planetary atmosphere as
a function of the planetary magnetic moment. We find that the particle flux to
the planetary atmosphere can be increased by more than three orders of
magnitude in the absence of a protecting magnetic field. For a weakly
magnetized planet (), only particles with energies
below 512 MeV are at least partially shielded. For a planet with a magnetic
moment similar to Earth, this limit increases to 32 GeV, whereas for a strongly
magnetized planet (), partial shielding extends up to 200
GeV. We find that magnetic shielding strongly controls the number of cosmic-ray
particles reaching the planetary atmosphere. The implications of this increased
particle flux are discussed in a companion article.Comment: 10 pages, 9 figures; accepted in A&
A comparison of HREM and weak beam transmission electron microscopy for the quantitative measurement of the thickness of ferroelectric domain walls
In this paper we present two methods for the quantitative measurement of the thickness of ferroelectric domain walls, one using high-resolution electron microscopy (HREM) and the other weak beam transmission electron microscopy (WBTEM). These techniques can be used to determine the thickness of domain walls at room temperature as well as close to the ferroelectric to paraelectric phase transition. The first method allows a direct visualization of the lattice distortion across the domain wall, by measuring the continuous deviation of a set of planes with respect to the undistorted lattice. The second method consists in a quantitative analysis of the thickness fringes that appear on weak beam images of inclined domain walls. By fitting simulated fringe profiles to experimental ones, we can extract the thickness of the domain walls in a quantitative way. These two complementary techniques lead to a complete characterization of the thickness of ferroelectric domain walls over a wide range of specimen thicknesses at different magnifications. As an example we apply these methods to ferroelectric domain walls in PbTiO3 The domain wall thickness at room temperature is found to be 1.5 ± 0.3 nm using HREM (in very thin samples≈10 nm) and 2.1 ± 0.7 nm using WBTEM (in samples thicker than 30 nm
Cathodoluminescence in a (S)TEM - Exploring Possibilities and Limits
Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201
Exogenous schwann cells migrate, remyelinate and promote clinical recovery in experimental auto-immune encephalomyelitis
Schwann cell (SC) transplantation is currently being discussed as a strategy that may promote functional recovery in patients with multiple sclerosis (MS) and other inflammatory demyelinating diseases of the central nervous system (CNS). However this assumes they will not only survive but also remyelinate demyelinated axons in the chronically inflamed CNS. To address this question we investigated the fate of transplanted SCs in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in the Dark Agouti rat; an animal model that reproduces the complex inflammatory demyelinating immunopathology of MS. We now report that SCs expressing green fluorescent protein (GFP-SCs) allografted after disease onset not only survive but also migrate to remyelinate lesions in the inflamed CNS. GFP-SCs were detected more frequently in the parenchyma after direct injection into the spinal cord, than via intra-thecal delivery into the cerebrospinal fluid. In both cases the transplanted cells intermingled with astrocytes in demyelinated lesions, aligned with axons and by twenty one days post transplantation had formed Pzero protein immunoreactive internodes. Strikingly, GFP-SCs transplantation was associated with marked decrease in clinical disease severity in terms of mortality; all GFP-SCs transplanted animals survived whilst 80% of controls died within 40 days of disease
Certified Coronavirus Immunity as a Resource and Strategy to Cope with Pandemic Costs
A pandemic is not only a biological event and a public health disaster, but it also generates impacts that are worth understanding from economic, societal, historical, and cultural perspectives. In this contribution, we argue that as the disease spreads, we are able to harness a valuable key resource: people who have immunity to coronavirus. This vital resource must be effectively employed, it must be certified, it must be searched for, it must be found, and it may even be actively produced. We discuss why this needs to be done and how this can be achieved. Our arguments not only apply to the current pandemic but also to any future rapidly spreading, infectious disease epidemics. In addition, we argue for high awareness of a major secondary, nonbiological crisis arising from the side effects of societal and economic pandemic reactions to actual or imagined health risks. There is a risk that the impacts of the secondary crisis could outweigh that of the biological event.</p
Magnetization of carbon-coated ferromagnetic nanoclusters determined by electron holography
The magnetic properties of carbon-coated Co and Ni nanoparticles aligned in chains were determined using transmission electron holography. The measurements of the phase change of the electron wave due to the magnetization of the sample were performed. The ratio of remnant magnetization to bulk saturation magnetization Mr/Ms of Co decreased from 53% to 16% and of Ni decreased from 70% to 30% as the particle diameter increased from 25 to 90 nm. It was evident that the inhomogenous magnetic configurations could diminish the stray field of the particles. After being exposed to a 2-Tesla external magnetic field, the Mr/Ms of Co increased by 45% from the original values with the same dependency on the particle size. The Mr/Ms of Ni particles, on the other hand, increased only 10%. The increased magnetization could be attributed to the merging of small domains into larger ones after the exposure to the external magnetic field. The validity of the interpretation of the holograms was established by simulatio
Concerning long-term geomagnetic variations and space climatology
During geomagnetic polarity transitions the surface magnetic field of the Earth decays to about 25% and less of its present value. This implies a shrinking of the terrestrial magnetosphere and posses the question of whether magnetospheric magnetic field variations scale in the same manner. Furthermore, the geomagnetic main field also controls the magnetospheric magnetic field and space weather conditions. Long-term geomagnetic variations are thus intimately related to space climate. We critically assess existing scaling relations and derive new ones for various magnetospheric parameters. For example, we find that ring current perturbations do not increase with decreasing dipole moment. And we derive a scaling relation for the polar electrojet contribution, indicating a weak increase with increasing internal field. From this we infer that the ratio between external and internal field contributions may be weakly enhanced during polarity transitions. Our scaling relations also provide more insight on the importance of the internal geomagnetic field contribution for space climate
- …