397 research outputs found

    Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14

    Get PDF
    Processes in the soil remain among the least well-characterized components of the carbon cycle. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts in many terrestrial ecosystems and account for a large fraction of photosynthate in a wide range of ecosystems; they therefore play a key role in the terrestrial carbon cycle. A large part of the fungal mycelium is outside the root ( the extraradical mycelium, ERM) and, because of the dispersed growth pattern and the small diameter of the hyphae (<5 micrometers), exceptionally difficult to study quantitatively. Critically, the longevity of these. ne hyphae has never been measured, although it is assumed to be short. To quantify carbon turnover in these hyphae, we exposed mycorrhizal plants to fossil ("carbon-14 - dead") carbon dioxide and collected samples of ERM hyphae ( up to 116 micrograms) over the following 29 days. Analyses of their carbon-14 content by accelerator mass spectrometry (AMS) showed that most ERM hyphae of AM fungi live, on average, 5 to 6 days. This high turnover rate reveals a large and rapid mycorrhizal pathway of carbon in the soil carbon cycle

    Direct and indirect health impacts of climate change on the vulnerable elderly population in East China

    Get PDF
    The latest scientific advances on the impacts of climate change on the health of the elderly in East China were reviewed consulting peer-reviewed publications from 2000-2017. The direct impacts of climate change result from rising temperatures, heatwaves, and increases in the frequency of complex extreme weather events such as windstorms, floods, and droughts. The health and social consequences of these events are far-reaching, ranging from reduced labour productivity and heat-related deaths, through to direct physical injury during extreme weather events, the spread of infectious diseases, and mental health effects following widespread flooding or prolonged drought. Research has indicated that climate change will have the greatest impact on vulnerable groups of people, including the elderly population. However, there is a dearth of empirical evidence, a lack of focus on vulnerable segments of the population (especially elderly), limited understanding of how health status will change in the future, and lack of acknowledgement of how different regions in China vary in terms of the consequences of climate change. The main risk in East China that climate change may exacerbate is flooding (sea level rise, coastal and riverine, flood risk). However in some regions of East China such as in the provinces of Anhui, Jiangsu, Hebei and Shandong the biggest climate change risk is considered to be drought. Main health risks linked to climate change are evident as cardiovascular and respiratory diseases (heat stroke, exhaustion, and asthma), often caused by interactions between heatwave episodes and concurrent poor air quality

    Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field

    Get PDF
    Climate change treatments - winter warming, summer drought and increased summer precipitation - have been imposed on an upland grassland continuously for 7 years. The vegetation was surveyed yearly. In the seventh year, soil samples were collected on four occasions through the growing season in order to assess mycorrhizal fungal abundance. Mycorrhizal fungal colonisation of roots and extraradical mycorrhizal hyphal (EMH) density in the soil were both affected by the climatic manipulations, especially by summer drought. Both winter warming and summer drought increased the proportion of root length colonised (RLC) and decreased the density of external mycorrhizal hyphal. Much of the response of mycorrhizal fungi to climate change could be attributed to climate-induced changes in the vegetation, especially plant species relative abundance. However, it is possible that some of the mycorrhizal response to the climatic manipulations was direct - for example, the response of the EMH density to the drought treatment. Future work should address the likely change in mycorrhizal functioning under warmer and drier conditions

    Intrinsic and Extrinsic Contributions to the Lattice Parameter of GaMnAs

    Full text link
    We report on measurements of the crystal structure and hole density in a series of as-grown and annealed GaMnAs samples. The measured hole densities are used to obtain the fraction of incorporated Mn atoms occupying interstitial and substitutional sites. This allows us to make a direct comparison of the measured lattice parameters with recent density functional theory (DFT) predictions. We find that the decrease in lattice constant observed on annealing is smaller than that predicted due to the out diffusion of interstitial Mn during annealing. The measured lattice parameters after annealing are still significantly larger than that of GaAs even in samples with very low compensation. This indicates that the intrinsic lattice parameter of GaMnAs is significantly larger than that of GaAs, in contradiction to the DFT prediction.Comment: To appear in Appl. Phys. Lett.,13 pages,3 figures and 1 tabl

    In-plane uniaxial anisotropy rotations in (Ga,Mn)As thin films

    Full text link
    We show, by SQUID magnetometry, that in (Ga,Mn)As films the in-plane uniaxial magnetic easy axis is consistently associated with particular crystallographic directions and that it can be rotated from the [-110] direction to the [110] direction by low temperature annealing. We show that this behavior is hole-density-dependent and does not originate from surface anisotropy. The presence of uniaxial anisotropy as well its dependence on the hole-concentration and temperature can be explained in terms of the p-d Zener model of the ferromagnetism assuming a small trigonal distortion.Comment: 4 pages, 6 Postscript figures, uses revtex

    Tuning perpendicular magnetic anisotropy in (Ga,Mn)(As,P) by thermal annealing

    Full text link
    We have investigated the effects of post growth low temperature annealing on the magnetic, electrical and structural properties of (Ga_0.94,Mn_0.06)(As_0.9,P_0.1) layers grown by molecular beam epitaxy. By controlling the annealing time we are able to tune the magnetic anisotropy between an easy axis in the plane for the as-grown samples, to an easy axis perpendicular to the plane for fully annealed samples. The increase of the carrier density, as a result of annealing, is found to be the primary reason for the change in magnetic anisotropy, in qualitative agreement with theoretical predictions.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter

    Domain imaging and domain wall propagation in (Ga,Mn)As thin films with tensile strain

    Full text link
    We have performed spatially resolved Polar Magneto-Optical Kerr Effect Microscopy measurements on as-grown and annealed Ga0.95Mn0.05As thin films with tensile strain. We find that the films exhibit very strong perpendicular magnetic anisotropy which is increased upon annealing. During magnetic reversal, the domain walls propagate along the direction of surface ripples for the as-grown sample at low temperatures and along the [110] direction for the annealed sample. This indicates that the magnetic domain pattern during reversal is determined by a combination of magnetocrystalline anisotropy and a distribution of pinning sites along the surface ripples that can be altered by annealing. These mechanisms could lead to an effective method of controlling domain wall propagation.Comment: 8 pages, 3 figures. to appear in Journal of Applied Physic
    corecore