186 research outputs found

    Rapid Synthesis of Near Infrared Polymeric Micelles for Real-Time Sentinel Lymph Node Imaging

    Get PDF
    In this manuscript a synthetic methodology for developing sub 20 nm sized polymeric micellar nanoparticles designed for extravascular imaging and therapy is revealed. A simple, one-pot method is followed, which involves a rapid co-self-assembly of an amphiphilic diblock copolymer (PS-b-PAA) and polyoxyethylene (80) sorbitan monooleate in water. Sorbitan monooleate imparts stability to the micelles and helps to drive down the particle size below 20 nm. The particles are incorporated with a water soluble dye ADS832WS, which absorbs in the near infrared range (λ_(ex) = 832 nm) for sensitive detection with optical and photoacoustic imaging techniques. A candidate lipophilic anti-angiogenic therapeutic agent fumagillin was also incorporated with high entrapment (>95%) efficiency. The effectiveness of this theranostic platform for real-time, high-resolution intraoperative photoacoustic imaging for facilitating direct assessment of the sentinel lymph nodes (SLN) in breast cancer staging is demonstrated. The technique offers huge potential providing faster resection of SLN and may minimize complications caused by axillary exploration due to mismarking with dyes or low-resolution imaging techniques. Finally, the biodistribution and organ accumulation of the intravenously and intradermally injected particles are studied in a rodent model by optical imaging. Data suggest that intraveneously injected NIR-polymeric nanoparticles follow a typical bio-distribution clearance path through the reticuloendothelial (RES) system. For the intradermally injected particles, a slower mechanism of clearance is noticed

    Structure and Metal Binding Properties of ZnuA, a Periplasmic Zinc Transporter from \u3cem\u3eEscherichia coli\u3c/em\u3e

    Get PDF
    ZnuA is the periplasmic Zn2+-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn2+-bound, and Co2+-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn2+ with Co2+ results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn2+ periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn2+ (estimated K d \u3c 20 nM), Co2+, Ni2+, Cu2+, Cu+, and Cd2+, but not Mn2+. Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn2+ substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer

    Minute-of-Arc Resolution Gamma ray Imaging Experiment—MARGIE

    Get PDF
    MARGIE (Minute-of-Arc Resolution Gamma-ray Imaging Experiment) is a large area(∼104 cm2), wide field-of-view (∼1 sr), hard X-ray/gamma-ray (∼20–600 keV) coded-mask imaging telescope capable of performing a sensitive survey of both steady and transient cosmic sources. MARGIE has been selected for a NASA mission-concept study for an Ultra Long Duration (100 day) Balloon flight. We describe our program to develop the instrument based on new detector technology of either cadmium zinc telluride (CZT) semiconductors or pixellated cesium iodide (CsI) scintillators viewed by fast-timing bi-directional charge-coupled devices (CCDs). The primary scientific objectives are to image faint Gamma-Ray Bursts (GRBs) in near-real-time at the low intensity (high-redshift) end of the logN-logS distribution, thereby extending the sensitivity of present observations, and to perform a wide field survey of the Galactic plane

    MARGIE: A gamma-ray burst ultra-long duration balloon mission

    Get PDF
    We are designing MARGIE as a 100 day ULDB mission to: a) detect and localize gamma-ray bursts; and b) survey the hard X-ray sky. MARGIE will consist of one small field-of-view (FOV) and four large FOV coded mask modules mounted on a balloon gondola. The burst position will be calculated onboard and disseminated in near-real time, while information about every count will be telemetered to the ground for further analysis. In a 100-day mission we will localize ∼40 bursts with peak photon fluxes from 0.14 to ∼5 ph cm−2 s−1 using 1 s integrations; the typical localization resolution will be better than ∼2 arcminutes

    Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging

    Get PDF
    A superior and commercially exploitable 'green synthesis' of optically active carbon nanoparticle (OCN) is revealed in this work. The naked carbon particles (<20 nm) were derived from commercial food grade honey. The fluorescence properties of these particles were significantly enhanced by utilizing hyberbranched polymer for surface passivation. A dramatic increase in near infrared emission was achieved compared to a linear polymer (PEG) coated carbon nanoparticles. Interestingly, as passivating agent becomes more extensively branched (pseudo generation 2 to 4), the average radiant efficiency amplifies considerably as a direct result of the increasing surface area available for light passivation. The particles showed negligible loss of cell viability in presence of endothelial cells in vitro. Preliminary in vivo experiment showed high contrast enhancement in auxiliary lymphnode in a mouse model. The exceptionally rapid lymphatic transport of these particles suggests that such an approach may offer greater convenience and reduced procedural expense, as well as improved surgical advantage as the patient is positioned on the table for easier resection

    Adenine-induced chronic kidney disease induces a similar skeletal phenotype in male and female C57BL/6 mice with more severe deficits in cortical bone properties of male mice

    Get PDF
    Chronic kidney disease (CKD) causes bone loss, particularly in cortical bone, through formation of cortical pores which lead to skeletal fragility. Animal models of CKD have shown variability in the skeletal response to CKD between males and females suggesting sex may play a role in this variation. Our aim was to compare the impact of adenine-induced CKD on cortical parameters in skeletally mature male and female C57Bl/6 mice. After 10-weeks of adenine-induced CKD, both male and female adenine mice had high serum parathyroid hormone (PTH), high bone turnover, and cortical porosity compared to non-CKD controls. Both sexes had lower cortical thickness, but only male mice had lower cortical bone area. CKD imparted greater deficits in mechanical properties of male mice compared to female mice. These data demonstrate that both male and female mice develop high PTH/high bone turnover in response to adenine-induced CKD and that cortical bone phenotypes are slightly more severe in males, particularly in mechanical properties deficits

    Rapid Synthesis of Near Infrared Polymeric Micelles for Real-Time Sentinel Lymph Node Imaging

    Get PDF
    In this manuscript a synthetic methodology for developing sub 20 nm sized polymeric micellar nanoparticles designed for extravascular imaging and therapy is revealed. A simple, one-pot method is followed, which involves a rapid co-self-assembly of an amphiphilic diblock copolymer (PS-b-PAA) and polyoxyethylene (80) sorbitan monooleate in water. Sorbitan monooleate imparts stability to the micelles and helps to drive down the particle size below 20 nm. The particles are incorporated with a water soluble dye ADS832WS, which absorbs in the near infrared range (λ_(ex) = 832 nm) for sensitive detection with optical and photoacoustic imaging techniques. A candidate lipophilic anti-angiogenic therapeutic agent fumagillin was also incorporated with high entrapment (>95%) efficiency. The effectiveness of this theranostic platform for real-time, high-resolution intraoperative photoacoustic imaging for facilitating direct assessment of the sentinel lymph nodes (SLN) in breast cancer staging is demonstrated. The technique offers huge potential providing faster resection of SLN and may minimize complications caused by axillary exploration due to mismarking with dyes or low-resolution imaging techniques. Finally, the biodistribution and organ accumulation of the intravenously and intradermally injected particles are studied in a rodent model by optical imaging. Data suggest that intraveneously injected NIR-polymeric nanoparticles follow a typical bio-distribution clearance path through the reticuloendothelial (RES) system. For the intradermally injected particles, a slower mechanism of clearance is noticed

    The Open Source GAITOR Suite for Rodent Gait Analysis

    Get PDF
    Locomotive changes are often associated with disease or injury, and these changes can be quantified through gait analysis. Gait analysis has been applied to preclinical studies, providing quantitative behavioural assessment with a reasonable clinical analogue. However, available gait analysis technology for small animals is somewhat limited. Furthermore, technological and analytical challenges can limit the effectiveness of preclinical gait analysis. The Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) Suite is designed to increase the accessibility of preclinical gait analysis to researchers, facilitating hardware and software customization for broad applications. Here, the GAITOR Suite’s utility is demonstrated in 4 models: a monoiodoacetate (MIA) injection model of joint pain, a sciatic nerve injury model, an elbow joint contracture model, and a spinal cord injury model. The GAITOR Suite identified unique compensatory gait patterns in each model, demonstrating the software’s utility for detecting gait changes in rodent models of highly disparate injuries and diseases. Robust gait analysis may improve preclinical model selection, disease sequelae assessment, and evaluation of potential therapeutics

    Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis

    Get PDF
    The NF-κB signaling pathway is implicated in various inflammatory diseases, including rheumatoid arthritis (RA); therefore, inhibition of this pathway has the potential to ameliorate an array of inflammatory diseases. Given that NF-κB signaling is critical for many immune cell functions, systemic blockade of this pathway may lead to detrimental side effects. siRNAs coupled with a safe and effective delivery nanoplatform may afford the specificity lacking in systemic administration of small-molecule inhibitors. Here we demonstrated that a melittin-derived cationic amphipathic peptide combined with siRNA targeting the p65 subunit of NF-κB (p5RHH-p65) noncovalently self-assemble into stable nanocomplexes that home to the inflamed joints in a murine model of RA. Specifically, administration of p5RHH-p65 siRNA nanocomplexes abrogated inflammatory cytokine expression and cellular influx into the joints, protected against bone erosions, and preserved cartilage integrity. The p5RHH-p65 siRNA nanocomplexes potently suppressed early inflammatory arthritis without affecting p65 expression in off-target organs or eliciting a humoral response after serial injections. These data suggest that this self-assembling, largely nontoxic platform may have broad utility for the specific delivery of siRNA to target and limit inflammatory processes for the treatment of a variety of diseases
    • …
    corecore