69 research outputs found

    Topological traits of a cellular pattern versus growth rate anisotropy in radish roots

    Get PDF
    The topology of a cellular pattern, which means the spatial arrangement of cells, directly corresponds with cell packing, which is crucial for tissue and organ functioning. The topological features of cells that are typically analyzed are the number of their neighbors and the cell area. To date, the objects of most topological studies have been the growing cells of the surface tissues of plant and animal organs. Some of these researches also provide verification of Lewis’s Law concerning the linear correlation between the number of neighboring cells and the cell area. Our aim was to analyze the cellular topology and applicability of Lewis’s Lawto an anisotropically growing plant organ. The object of our study was the root apex of radish. Based on the tensor description of plant organ growth, we specified the level of anisotropy in specific zones (the root proper, the columella of the cap and the lateral parts of the cap) and in specific types of both external (epidermis) and internal tissues (stele and ground tissue) of the apex. The strongest anisotropy occurred in the root proper, while both zones of the cap showed an intermediate level of anisotropy of growth. Some differences in the topology of the cellular pattern in the zones were also detected; in the root proper, six-sided cells predominated, while in the root cap columella and in the lateral parts of the cap, most cells had five neighbors. The correlation coefficient rL between the number of neighboring cells and the cell area was high in the apex as a whole as well as in all of the zones except the root proper and in all of the tissue types except the ground tissue. In general, Lewis’s Law was fulfilled in the anisotropically growing radish root apex. However, the level of the applicability (rL value) of Lewis’s Lawwas negatively correlated with the level of the anisotropy of growth, which may suggest that in plant organs in the regions of anisotropic growth, the number of neighboring cells is less dependent on the cell size

    Alterations in metabolism and metabolic enzyme function and carcinogenesis

    Get PDF
    Dr Otto H. Warburg wykład 1966 Nobliści w Lindau, Niemcy „Rak, ponad wszystkie inne choroby ma niezliczoną ilość wtórnych przyczyn. Jednak nawet w przypadku raka istnieje tylko jedna główna przyczyna. Podsumowując w kilku słowach, główną przyczyną raka jest zastąpienie oddychania tlenowego w normalnych komórkach organizmu przez fermentację cukru…” Wzrost i rozwój organizmu jest nieodłącznie związany z dostępnością składników odżywczych. W związku z tym wyewoluowały specyficzne mechanizmy pozwalające na koordynację tych procesów w zależności od dostępności pożywienia, co umożliwia organizmom przetrwanie w czasie głodu. Zmniejszenie zasobów energetycznych powoduje wydłużenie życia, natomiast nadmiar kalorii jest powiązany z otyłością i chorobami nowotworowymi. Na poziomie komórkowym prawidłowe, dzielące się komórki aktywują szlaki metaboliczne, umożliwiające akumulację masy i energii wykorzystywanych do syntezy DNA w celu reprodukcji. Natomiast komórki nowotworowe przeprogramowują w sposób, wydaje się, kontrolowany swój metabolizm, aby dzielić się i rozprzestrzeniać w sposób niekontrolowany. Pewne geny kodujące enzymy metaboliczne zostają wyłączone w komórkach nowotworowych, a inne ulegają zwiększonej ekspresji, powodując zmiany metaboliczne. Badania prowadzone w ostatnich latach pokazały, że niektóre enzymy procesu glikolizy, mające swoją główną funkcję w cytoplazmie, mają zdolność do przemieszczania się do jądra komórkowego, gdzie pełnią zupełnie inne niemetaboliczne funkcje, np. biorą udział w kontroli ekspresji genów. Dlatego poznanie wpływu metabolizmu na kontrolę ekspresji genów może być niezwykle istotne w zrozumieniu przyczyn nowotworzenia.Dr Otto Warburg (Nobel in 1931) in his lecture on Lindau Nobel Laureates Meeting in 1966, Germany, stated: “Cancer, above all other diseases, has countless secondary causes… But, even for cancer, there is only one prime cause. To summarise in a few words, the prime cause of cancer is the replacement of the respiration of oxygen in normal body cells by a fermentation of sugar…” Growth and development of organisms are strictly dependent from availability of nutrients. Evolved specific mechanisms controlling those processes can help organisms to survive starvation. Calorific restriction leads to longer life span, but the opposite, too many calories are associated with obesity and tumourigenesis. On a cellular level, normal dividing cells activate particular metabolic pathways to accumulate cell mass and energy for DNA synthesis required for reproduction. By contrast tumour cells reprogramme their metabolism, possibly in controlled way, for uncontrolled division and growth. Some genes encoding metabolic enzymes are inactivated while others exhibit increased expression, causing metabolic changes in tumour cells. Recent studies showed that certain glycolytic enzymes mainly active in cytoplasm may move from cytoplasm to the nucleus where they can play different, nonglycolytic functions e.g., control the gene expression. Therefore, to understand the influence of metabolism on gene expression can be crucial to discovering the causes of carcinogenesis.

    Dyskusja

    Get PDF
    Oddajemy do rąk Czytelnika kolejny tom z serii „Podstawowe idee i koncepcje w geografii” pt. Dorobek polskiej geografii po konferencji w Rydzynie. Ocena krytyczna. [...] Właśnie minęło 30 lat od przełomowej dla polskiej geografii konferencji w Rydzynie (1983 r.). Miała ona duże znaczenie dla przemian teorii i praktyki geografii. W Rydzynie zwrócono uwagę na odmienne od dotychczasowych możliwości interpretacyjne rzeczywistości badawczej geografii rozwijane zwłaszcza w krajach anglosaskich. W kontekście tym przedstawiono nowe pola badawcze naszej dyscypliny zwłaszcza nieistniejącą wcześniej geografię społeczną jej podejścia radykalne i behawioralne oraz zaprezentowano perspektywę humanistyczną w badaniach geograficznych. Mimo trudności instytucjonalnych w przebijaniu się efektów tej innowacyjnej konferencji do teorii i empirii polskiej geografii, czas pokazał, że jej dorobek nie został zaprzepaszczony. Niniejszy tom składa się z 13 prac, w których autorzy podjęli teoretyczną refleksję nad rolą konferencji w Rydzynie dla polskiej geografii oraz krytyczny namysł nad dorobkiem geografii po konferencji

    Automatic Segmentation Framework for Fluorescence in Situ Hybridization Cancer Diagnosis

    No full text
    Part 3: Images, Visualization, ClassificationInternational audienceIn this paper we address a problem of HER2 and CEN-17 reactions detection in fluorescence in situ hybridization images. These images are very often used in situation where typical biopsy examination is not able to provide enough information to decide on the type of treatment the patient should undergo. Here the main focus is placed on the automatization of the procedure. Using an unsupervised neural network and principal component analysis, we present a segmentation framework that is able to keep the high segmentation accuracy. For comparison purposes we test the neural network approach against an automatic threshold method

    Cilliba cassideasimilis Bloszyk, Stachowiak & Halliday, 2006, sp. nov.

    No full text
    <i>Cilliba cassideasimilis</i> sp. nov. (Figures 9–22) <p> <i>Cilliba</i> species II.— Bloszyk & Olszanowski, 1985: 488.</p> <p> <i>Cilliba cassidea</i>.— Bloszyk & Olszanowski, 1986: 193.</p> <p> <i>Cilliba</i> species I.— Bloszyk, 1990: 227; 1991: 118; 1992: 324; 1998: 99; 1999: 160.</p> <p> <i>Cilliba</i> sp.— Bloszyk, 1993: 176; 1995: 166; Bloszyk & Olszanowski, 1999: 44; Bloszyk & Krysiak, 2000: 117.</p> <p> <i>Uropoda</i> (<i>Cilliba</i>) <i>cassidea</i>: Gwiazdowicz, 1999: 39.</p> <p> <i>Uropoda</i> (<i>Cilliba</i>) species 1: Skorupski, 2000: 27.</p> <p> <i>Uropoda</i> (<i>Cilliba</i>) <i>cassideasimilis</i>.—Wi ś niewski & Hirschmann, 1993: 192; Wi ś niewski, 1993: 259.</p> <p> <i>Uropoda</i> aff. <i>cassidea</i>.— Mašán, 2001: 284.</p> <p> <b>Material examined.</b> HOLOTYPE: female, Poland, Gorczański National Park, UTM: DV 39, 22 June 1995, leaf litter, alt. 830 m a.s.l., col. PC (GPN­000.08); PARATYPES: Germany: 6 Ψ, 10 ɗ, Schweingangen valley, [1 sample, 1945]. Spain: 4 Ψ, 2 ɗ, la Coruna Province, 43°01'00" N, 08°40'00" W, [1 sample, 1983], 7 Ψ, 18 ɗ, Ponteverda Province, 42°15'00" N, 08°60'00" W, [2 samples, 1983]. Ireland: 4 Ψ, 8 ɗ, Killarney National Park, 52°00'00" N, 09°50'00" W, [4 samples, 1981] (Fig. 9). Poland (Fig. 10): 81 Ψ, 101 ɗ, 79 deutonymphs, 27 protonymphs, 15 larvae, Gorczański National Park, UTM: DV 3947, [84 samples, 1974–1995]; 18 Ψ, 20 ɗ, 15 deutonymphs, 8 protonymphs, 2 larvae, Bialowieski National Park, UTM: FD 8394, [17 samples, [1961–2001]; 68 Ψ, 114 ɗ, 54 deutonymphs, 20 protonymphs, 2 larvae, Roztocze, UTM: FB 40, 68, [45 samples, 1956–2001]; 33 Ψ, 45 ɗ, 6 deutonymphs, 2 protonymphs, Bieszczady Mnts., UTM: EV 87, 94, 97, FB 0 1, FV 0 3, 14, 16, 23, 24, [11 samples, 1959–1995]; 2 females, 1 deutonymph, Upper Silesia, UTM: CA 50, CB 70, 81, [3 samples, 1976–1992]; 36 Ψ, 59 ɗ, 1 deutonymph, 2 protonymphs, 1 larva, Beskidy Mnts., UTM: EA 46, 62, EV 0 8, 0 9, 17, 58, 98 [15 samples, 1958–1983]; 3 Ψ, 4 ɗ, 8 deutonymphs, 6 protonymphs, 3 larvae, "Las Gr dowy nad Mogilnic " Res. near Pniewy, WU 81 [6 samples, 1982–1983]; 20 Ψ, 11 ɗ, 25 deutonymphs, 23 protonymphs, 10 larvae, Majdów Res., UTM: DB 86 [6 samples, 1992]; 31 Ψ, 47 ɗ, 17 deutonymphs, 2 protonymphs, Pieniny Mnts., UTM: DV 15, 57, 66, 67, [15 samples, 1968–1979]; 27 Ψ, 38 ɗ, Mazury, UTM: DD 0 9, 54 DE 17, 19, 33, EE 0 7, 0 8, 24, 39, FE 50, [12 samples, 1971–1980]; 38 Ψ, 36 ɗ, Świętokrzyskie Mnts., UTM: DB 73, 85, EB 0 3, 13 [8 samples, 1971–1981]; 13 Ψ, 22 ɗ, 1 deutonymph, 1 protonymph, Babiogórski National Park, UTM: CA 50, CV 99, [6 samples, 1975–1981]; 13 Ψ, 7 ɗ, 2 deutonymphs, Karkonosze Mnts., UTM: WS 33,44,52, XR 29, XS 23, [5 samples, 1970–1976]; 3 Ψ, 2 ɗ, 6 deutonymphs, 1 protonymph, Wolin National Park & Southern Pomerania, UTM: VV 67,70, WV 52,83, [4 samples, 1975–1996]; 10 Ψ, 9 ɗ, 3 deutonymphs, 1 protonymph, Ojcowski National Park, UTM: DA 16,24,82. [5 samples, 1969–1970]; 8 Ψ, 6 ɗ, 5 deutonymphs, Tatra Mnts., DV 25,26, [5 samples, 1973–1979]; 22 Ψ, 20 ɗ, 2 deutonymphs, Tuchola forests, UTM: CE 0 3,95, [5 samples, 1976–1996]; 13 Ψ, 25 ɗ, Kujawy, UTM: XV 0 1,71, [3 samples, 1975–2001]; 6 Ψ, 15 ɗ, 4 deutonymphs, Drawa river basin, UTM: WU 58,76, [3 samples, 1968]; 2 ɗ, Bieniszew near Konin, UTM: CC 0 9 [1 sample, 1968]; 4 ɗ, Toruń, UTM: CD 37, [1 sample, 1975]; 1 female, meadow near Jarocin, UTM: XT 76, [1 sample].</p> <p> <i>Female</i>. Well sclerotised, colour brown.</p> <p> <i>Dorsal idiosoma</i> (Fig. 11, 13 A, B). Length 775–828 µm (mean 808 µm), width 746–814 µm (mean 769 µm) (n = 31). Dorsal shield subcircular, smooth, with characteristic ornamentation of scattered circular pits in the posterior half. Marginal shield smooth, with numerous lyrifissures (<i>id</i>), fused with dorsal shield at anterior end of body. Dorsal setae numerous, thick, simple (mean 55 µm). Submarginal setae simple (mean 19 µm), marginal setae very numerous, short, hook­like.</p> <p> <i>Ventral idiosoma</i> (Figs 12 A, 13C, D). Sternal shield smooth, with five pairs of sternal setae (<i>st1–st5</i>); <i>st1</i> above the anterior edge of epigynium, and <i>st2–st5</i> lateral to the epigynium (<i>st1</i> =6 µm, <i>st2</i> =10 µm, <i>st3</i> =15 µm, <i>st4</i> =18 µm, <i>st5</i> =17 µm). Epigynial shield tongue­shaped, articulated at level of coxae IV, with small pits in the central part (Fig. 13 D). Length of epigynial shield 158–190 µm (mean 175 µm), width 110–134 µm (mean 118 µm); surface = 15344–21079 µm2. Opisthosoma smooth, except punctate area near the epigynial shield. Ventral setae simple, short; length of setae <i>v1</i> = <i>v2</i>. Adanal setae <i>Ad1</i> very short, <i>Ad2</i> twice as long as <i>Ad1</i>. Unpaired seta <i>Pa</i> as long as <i>Ad1</i>. Anal opening small, oval. Peritreme Vshaped, with characteristic curve in anterior third, without poststigmatic section, prestigmatic section 137–193 µm in length; stigmata at level of coxae III.</p> <p> <i>Gnathosoma</i> (Fig. 14). Epistome narrow and serrated, distally bifid. Hypostomal setae <i>h1</i> very long (61–82 µm), smooth; <i>h2</i> short (17–30 µm), robust; <i>h3</i> (16–29 µm), <i>ca</i> one­third length of <i>h1</i>, serrated; <i>h4</i> (12–24 µm), curved, robust or distally serrated. Hypostomal denticles in a row between setae <i>h2</i> and scattered between setae <i>h3</i> and <i>h4</i>. Ventral setae of palp trochanter robust, <i>pv1</i> (19–33 µm) longer and thicker than <i>pv2</i> (11–20 µm) (Fig. 14 A). Fixed digit of chelicera longer than movable digit, with anterior globular sensillum (Fig. 14 C). Base of tritosternum broad, with anterior shoulders, then narrowing, 6­branched, laciniae finely serrated (Fig. 14 D).</p> <p> <i>Legs</i> (Fig. 15 A). Structure and chaetotaxy typical for the genus (Table 2). Leg I without claws, but with a long terminal seta.</p> <p> <i>Male</i>. Well sclerotised, colour brown.</p> <p> <i>Dorsal idiosoma</i>. Length 756–911 µm (mean 815 µm), width 725–839 µm (mean 780 µm) (n = 38). Structure and chaetotaxy as for female.</p> <p> <i>Ventral idiosoma</i> (Fig. 12 B, 13E, F). Intercoxal region ornamented with small circular pits at level of coxae II–III and in area behind genital shield; sternal setae <i>st1–st3</i> very short, <i>st4–st5</i> longer. Genital operculum oval (68–81 x 48 –56 µm). Chaetotaxy and sculpture of opisthosoma as for female.</p> <p> <i>Gnathosoma</i> (Fig. 14 B). Hypostomal setae <i>h1</i> very long (<i>ca</i> 41 µm), smooth, simple; <i>h2</i> very short (9 µm), simple; <i>h3</i> modified into nodules 6 µm in diameter; <i>h4</i> short (<i>ca</i> 13 µm), curved, with pinnate ending and distal serration, located far from hypostomal axis. Setae <i>pv</i> on palp trochanters massive, <i>pv1</i> (<i>ca</i> 19 µm) simple, with single denticle, <i>pv2 ca</i> 9 µm. Fixed digit of chelicera longer than movable digit, provided with anterior globular sensillum. Tritosternum 6­branched, with broad base.</p> <p> <i>Legs</i> (Fig. 15 B). As for female, except trochanter III with a robust ventral spine (length 29–44 µm).</p> <p> <i>Deutonymph</i>. Partly sclerotised, colour yellowish to lightly brown.</p> <p> <i>Dorsal idiosoma</i> (Fig. 16 A). Length 681–780 µm (mean 720 µm), width 629–780 µm (mean 660 µm) (n = 37). Dorsal shield subcircular, smooth, marginal shield absent. Dorsal setae numerous, simple (mean 46 µm); some of them accompanied by circular pores; shield surface also with several lyrifissures (<i>id</i>). Submarginal setae simple (<i>ca</i> 36 µm). Marginal setae very numerous, short, hook­like.</p> <p> <i>Ventral idiosoma</i> (Fig. 16 B, 18A). Sternal shield amphora­shaped, with slightly widened base, smooth (length 306–364 µm), extending behind coxae IV, with five pairs of short, simple setae (<i>st1–st5</i>). Two pairs of lyrifissures: <i>iv1</i> near camerostome, <i>iv2</i> below setae <i>st5</i>. Ventral shield wide, smooth, with five pairs of simple ventral setae; all setae of equal length. Setae <i>v1</i>, <i>v2</i> and <i>v5</i> accompanied by circular pores. One pair of lyrifissures (<i>iv3</i>) located near setae <i>v2</i>. Anal shield triangular, with anal opening covered by a small valve, and a pair of very short setae <i>Ad1</i>. Setae <i>Ad2</i> and <i>Pa</i> on shield surrounding the anus, <i>Ad2</i> = 2 x <i>Pa</i>. Peritreme long, with characteristic curve at level of coxae II, without poststigmatic extension, prestigmatic section 177–230 µm in length, reaching camerostome, stigmata at level of coxae III.</p> <p> <i>Gnathosoma</i>. Epistome narrow and serrated, distally bifid. Hypostome similar to female (Fig. 17 A). Tritosternum 6­branched, with broad base (Fig. 17 B).</p> <p> <i>Legs</i> (Fig. 17 C). Structure and chaetotaxy as for female.</p> <p> <i>Protonymph</i>. Weakly sclerotised, colour white to yellowish.</p> <p> <i>Dorsal idiosoma</i> (Fig. 19 A). Length 469–504 µm, width 381–404 µm (n = 3). Podonotal shield pear­shaped, large (length 264–293 µm, width 180–186 µm), smooth. Mesopodal shields small, elongate (59–72 µm); mesonotal shields irregular in shape (diameter 84–91 µm); pygidial shield crescent­shaped (152–163 µm); all shields smooth. Setae <i>j3–6</i> simple, short, inserted on podonotal shield; <i>Z1</i>, <i>J1</i> and <i>J2</i> longer, inserted on pleura between podonotal and pygidial shields. Setae <i>j2</i>, <i>z2</i>, <i>z3</i>, <i>s3–6</i>, <i>S1</i>, <i>Z2</i> and <i>J4</i> short, positioned submarginally; only <i>J4</i> on small protuberances. Setae <i>j1</i>, <i>s2</i>, <i>r3–5</i>, <i>R1</i>, <i>R3</i>, <i>S3</i>, <i>S4</i>, <i>Z3</i>, <i>Z4</i> and <i>J5</i> long, massive, inserted on protuberances along the margin of the idiosoma; apparently supporting a soft, membranous fringe surrounding the idiosoma (width 102–117 µm). Several idiosomal setae with associated circular pores.</p> <p> <i>Ventral idiosoma</i> (Fig. 18 B, 19B). Weakly sclerotised, smooth. Sternal shield poorly defined, with three pairs of simple sternal setae. Metapodal shields elongate, smooth. Opisthogastric integument with four pairs of simple ventral setae (<i>v1</i>, <i>v3–v5</i>); <i>v1</i> and <i>v3</i> anterior to the ventri­anal shield, <i>v4</i> and <i>v5</i> lateral to ventri­anal shield. Three pairs of glands open on soft ventral pleura near metapodal shields (<i>gv1</i>, <i>gv2</i> and <i>gl6</i>). Ventri­anal shield oval (width 143–156 µm), smooth, with anal opening, a pair of setae <i>Ad</i> and an unpaired seta <i>Pa</i>; <i>Ad</i> = ½ <i>Pa</i>. Peritreme short, simple, without poststigmatic section (prestigmatic section straight, 61–86 µm in length); stigmata at the level of coxae III.</p> <p> <i>Gnathosoma</i>. As for female, except hypostomal groove more distinctly denticulate. Hypostomal setae <i>h3</i> denticulate. Palp trochanter setae <i>pv1</i> and <i>pv2</i> serrated (Fig. 20 A). Tritosternum 6­branched, with broad base (Fig. 20 B).</p> <p> <i>Legs</i> (Fig. 20 C). Structure of podomeres similar to adults. Chaetotaxy has not been analysed.</p> <p> <i>Larva</i>. Unsclerotised, colour whitish.</p> <p> <i>Dorsal idiosoma</i> (Fig. 21 A). Length <i>ca</i> 347 µm, width <i>ca</i> 266 µm. Anterior end of body with three indistinct cuticular processes. Podonotal shield lanceolate, smooth. Two pairs of sclerites located below the podonotum. Dorsal setae <i>j1–j6</i> and <i>J2</i> inserted paraaxially; <i>j1</i> long, recurved, <i>j2–j6</i> simple, short, located on the podonotum, <i>J2</i> bifid, inserted on pleura between podonotal and pygidial shields. Setae <i>z2</i>, <i>z3</i>, <i>s4</i>, <i>S1</i> and <i>Z2</i> on lateral part of the idiosoma; <i>z2</i>, <i>z3</i> and <i>s4</i> robust, longer than <i>j</i> ­series setae, inserted on the edge of podonotum, <i>S1</i> and <i>Z2</i> positioned in soft pleura. Setae <i>R1–R3</i>, <i>S4</i>, <i>Z3</i>, <i>Z4</i>, <i>J4</i> and <i>J5</i> massive, inserted on protuberances along the margin of the body; all bifid, except <i>S4</i> and <i>Z4</i>, which are horn­like.</p> <p> <i>Ventral idiosoma</i> (Fig. 21 B). Sternal setae (<i>st1–st3</i>) short, simple. Ventral setae <i>v1</i> short, simple, located above anal shield, <i>v5</i> bifid, inserted lateral to anal shield; <i>v5</i> = 60 µm; <i>v1</i> = 1/3 <i>v5</i>. One pair of ventral glands (<i>gv</i>) located above setae <i>v1</i>. Anal shield with one pair of glands, a pair of adanal setae <i>Ad</i> and unpaired postanal seta <i>Pa</i>; <i>Pa</i> = <i>Ad</i>.</p> <p> <i>Gnathosoma</i>. As for female, except hypostomal setae <i>h3</i> and <i>h4</i> not present, <i>h2</i> long, serrated, denticles on hypostomal surface and hypostomal groove blunt (Fig. 22 A). Palp trochanter setae <i>pv1</i> and <i>pv2</i> robust, short; <i>pv1</i> = <i>pv2</i>. Tritosternum 6­branched, with broad base (Fig. 22 B).</p> <p> <i>Legs</i> (Fig. 22 C). Trochanter I with serrated seta <i>pl</i>; tibia I with long robust dorsal setae; tarsus I with two proximal postero­dorsal setae robust, laterally serrated, <i>pd2</i> = 2 <i>pd1</i>. Femur II with serrated seta <i>pl</i>; genu and tibia II with spine­like <i>ad1–ad2</i> and <i>pd1–pd2</i> setae; tarsus II with setae <i>ad1</i> and <i>pd1–pd2</i>, robust, laterally serrated; setae <i>v1–v2</i> robust, and seta <i>pl</i> robust, distally serrated. Tarsus III with all setae robust, <i>v1–v2</i>, <i>ad</i> and <i>pd</i> long.</p> <p> <i>Etymology</i>: The name of this species refers to its similarity to <i>C. cassidea.</i></p>Published as part of <i>Bloszyk, Jerzy, Stachowiak, Marcin & Halliday, Bruce, 2006, Two new species of Cilliba von Heyden from Poland, with discussion of the Cilliba cassidea (Hermann) species complex (Acari: Mesostigmata: Uropodina: Cillibidae), pp. 1-45 in Zootaxa 1219</i> on pages 13-26, DOI: <a href="http://zenodo.org/record/172506">10.5281/zenodo.172506</a&gt
    corecore