172 research outputs found

    Knowledge networks in science-based start-ups : actors and strategies

    Get PDF
    The paper investigates the strategic choices made by young science-based firms’ regarding the selection of knowledge sources. Drawing on two streams of research – on alliances and on social networks – two different dimensions of this strategy are considered: the activation of the entrepreneurs’ social capital and the intentional inclusion of new knowledge sources. The data collected for a subset of the Portuguese biotechnology sector are analysed with a view to answer to three research questions: i) To what do extent firms’ rely on entrepreneurs’ personal networks, activating their social capital to access scientific and technological knowledge at start-up; ii) To what extent are new actors added to knowledge networks at start-up; iii) Are there differences between existing and new ties in terms of strength and formalisation. The results obtained confirm the consideration of the strategies underlying network building is vital for an understanding of the configuration of young science-based firms’ knowledge networks. They reveal the existence of different knowledge network building strategies that often combine tie persistence with search for novelty. They also suggest that differences in the network building strategies may be the behind the somewhat contradictory results presented in the literature about the network configuration that is more favourable for innovation

    Sacral agenesis: a pilot whole exome sequencing and copy number study

    Get PDF
    Background: Caudal regression syndrome (CRS) or sacral agenesis is a rare congenital disorder characterized by a constellation of congenital caudal anomalies affecting the caudal spine and spinal cord, the hindgut, the urogenital system, and the lower limbs. CRS is a complex condition, attributed to an abnormal development of the caudal mesoderm, likely caused by the effect of interacting genetic and environmental factors. A well-known risk factor is maternal type 1 diabetes. Method: Whole exome sequencing and copy number variation (CNV) analyses were conducted on 4 Caucasian trios to identify de novo and inherited rare mutations. Results: In this pilot study, exome sequencing and copy number variation (CNV) analyses implicate a number of candidate genes, including SPTBN5, MORN1, ZNF330, CLTCL1 and PDZD2. De novo mutations were found in SPTBN5, MORN1 and ZNF330 and inherited predicted damaging mutations in PDZD2 (homozygous) and CLTCL1 (compound heterozygous). Importantly, predicted damaging mutations in PTEN (heterozygous), in its direct regulator GLTSCR2 (compound heterozygous) and in VANGL1 (heterozygous) were identified. These genes had previously been linked with the CRS phenotype. Two CNV deletions, one de novo (chr3q13.13) and one homozygous (chr8p23.2), were detected in one of our CRS patients. These deletions overlapped with CNVs previously reported in patients with similar phenotype. Conclusion: Despite the genetic diversity and the complexity of the phenotype, this pilot study identified genetic features common across CRS patients

    Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes

    Get PDF
    Background: Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. Methods: We aim to identify genetic risk factors by a “trio-based” exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Results: Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Conclusions: Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD

    A Mendelian randomization study of testosterone and cognition in men

    Get PDF
    Testosterone replacement for older men is increasingly common, with some observations suggesting a protective effect on cognitive function. We examined the association of endogenous testosterone with cognitive function among older men in a Mendelian randomization study using a separate-sample instrumental variable (SSIV) analysis estimator to minimize confounding and reverse causality. A genetic score predicting testosterone was developed in 289 young Chinese men from Hong Kong, based on selected testosterone-related single nucleotide polymorphisms (rs10046, rs1008805 and rs1256031). The association of genetically predicted testosterone with delayed 10-word recall score and Mini-Mental State Examination (MMSE) score was assessed at baseline and follow-up using generalized estimating equation among 4,212 older Chinese men from the Guangzhou Biobank Cohort Study. Predicted testosterone was not associated with delayed 10-word recall score (−0.02 per nmol/L testosterone, 95% confidence interval (CI) −0.06–0.02) or MMSE score (0.06, 95% CI −0.002–0.12). These estimates were similar after additional adjustment for age, education, smoking, use of alcohol, body mass index and the Framingham score. Our findings do not corroborate observed protective effects of testosterone on cognitive function among older men

    Chinese family with diffuse oesophageal leiomyomatosis: A new COL4A5/COL4A6 deletion and a case of gonosomal mosaicism

    Get PDF
    © 2015 Liu et al. Background: Diffuse oesophageal leiomyomatosis (DOL) is a rare disorder characterized by tumorous overgrowth of the muscular wall of the oesophagus. DOL is present in 5 % of Alport syndrome (AS) patients. AS is a rare hereditary disease that involves varying degrees of hearing impairment, ocular changes and progressive glomerulonephritis leading to renal failure. In DOL-AS patients, the genetic defect consists of a deletion involving the COL4A5 and COL4A6 genes on the X chromosome. Case presentation: We report a two-generation family (4 individuals; parents and two children, one male and one female) with two members (mother and son) affected with oesophageal leiomyomatosis. Signs of potential renal failure, which characterizes AS, were only apparent in the index patient (son) 2 years and three months after the initial diagnosis of DOL. Blood DNA from the four family members were submitted to exome sequencing and array genotyping to perform a genome wide screening for disease causal single nucleotide (SN) and copy number (CN) variations. Analyses revealed a new 40kb deletion encompassing from intron 2 of COL4A5 to intron 1 of COL4A6 at Xq22.3. The breakpoints were also identified. Possible confounding pathogenic exonic variants in genes known to be involved in other extracellular matrices disorders were also shared by the two affected individuals. Meticulous analysis of the maternal DNA revealed a case of gonosomal mosaicism. Conclusions: This is the first report of gonadosomal mosaicism associated to DOL-AS.published_or_final_versio

    Behavior of QQ-Plots and Genomic Control in Studies of Gene-Environment Interaction

    Get PDF
    Genome-wide association studies of gene-environment interaction (GxE GWAS) are becoming popular. As with main effects GWAS, quantile-quantile plots (QQ-plots) and Genomic Control are being used to assess and correct for population substructure. However, in GE work these approaches can be seriously misleading, as we illustrate; QQ-plots may give strong indications of substructure when absolutely none is present. Using simulation and theory, we show how and why spurious QQ-plot inflation occurs in GE GWAS, and how this differs from main-effects analyses. We also explain how simple adjustments to standard regression-based methods used in GE GWAS can alleviate this problem

    Targeted next-generation sequencing on hirschsprung disease: A pilot study exploits DNA pooling

    Get PDF
    To adopt an efficient approach of identifying rare variants possibly related to Hirschsprung disease (HSCR), a pilot study was set up to evaluate the performance of a newly designed protocol for next generation targeted resquencing. In total, 20 Chinese HSCR patients and 20 Chinese sex-matched individuals with no HSCR were included, for which coding sequences (CDS) of 62 genes known to be in signaling pathways relevant to enteric nervous system development were selected for capture and sequencing. Blood DNAs from eight pools of five cases or controls were enriched by PCR-based RainDance technology (RDT) and then sequenced on a 454 FLX platform. As technical validation, five patients from case Pool-3 were also independently enriched by RDT, indexed with barcode and sequenced with sufficient coverage. Assessment for CDS single nucleotide variants showed DNA pooling performed well (specificity/sensitivity at 98.4%/83.7%) at the common variant level; but relatively worse (specificity/sensitivity at 65.5%/61.3%) at the rare variant level. Further Sanger sequencing only validated five out of 12 rare damaging variants likely involved in HSCR. Hence more improvement at variant detection and sequencing technology is needed to realize the potential of DNA pooling for large-scale resequencing projects. © 2014 John Wiley & Sons Ltd/University College London.postprin

    The ESR1 (6q25) locus is associated with calcaneal ultrasound parameters and radial volumetric bone mineral density in European men

    Get PDF
    <p><b>Purpose:</b> Genome-wide association studies (GWAS) have identified 6q25, which incorporates the oestrogen receptor alpha gene (ESR1), as a quantitative trait locus for areal bone mineral density (BMD(a)) of the hip and lumbar spine. The aim of this study was to determine the influence of this locus on other bone health outcomes; calcaneal ultrasound (QUS) parameters, radial peripheral quantitative computed tomography (pQCT) parameters and markers of bone turnover in a population sample of European men.</p> <p><b>Methods:</b> Eight single nucleotide polymorphisms (SNP) in the 6q25 locus were genotyped in men aged 40-79 years from 7 European countries, participating in the European Male Ageing Study (EMAS). The associations between SNPs and measured bone parameters were tested under an additive genetic model adjusting for centre using linear regression.</p> <p><b>Results:</b> 2468 men, mean (SD) aged 59.9 (11.1) years had QUS measurements performed and bone turnover marker levels measured. A subset of 628 men had DXA and pQCT measurements. Multiple independent SNPs showed significant associations with BMD using all three measurement techniques. Most notably, rs1999805 was associated with a 0.10 SD (95%CI 0.05, 0.16; p = 0.0001) lower estimated BMD at the calcaneus, a 0.14 SD (95%CI 0.05, 0.24; p = 0.004) lower total hip BMD(a), a 0.12 SD (95%CI 0.02, 0.23; p = 0.026) lower lumbar spine BMD(a) and a 0.18 SD (95%CI 0.06, 0.29; p = 0.003) lower trabecular BMD at the distal radius for each copy of the minor allele. There was no association with serum levels of bone turnover markers and a single SNP which was associated with cortical density was also associated with cortical BMC and thickness.</p> <p><b>Conclusions:</b> Our data replicate previous associations found between SNPs in the 6q25 locus and BMD(a) at the hip and extend these data to include associations with calcaneal ultrasound parameters and radial volumetric BMD.</p&gt

    A powerful and rapid approach to human genome scanning using small quantities of genomic DNA

    Get PDF
    Summary Dense maps of short-tandem-repeat polymorphisms (STRPs) have allowed genome-wide searches for genes involved in a great variety of diseases with genetic influences, including common complex diseases. Generally for this purpose, marker sets with a 10 cM spacing are genotyped in hundreds of individuals. We have performed power simulations to estimate the maximum possible intermarker distance that still allows for sufficient power. In this paper we further report on modifications of previously published protocols, resulting in a powerful screening set containing 229 STRPs with an average spacing of 18n3 cM. A complete genome scan using our protocol requires only 80 multiplex PCR reactions which are all carried out using one set of conditions and which do not contain overlapping marker allele sizes. The multiplex PCR reactions are grouped by sets of chromosomes, which enables on-line statistical analysis of a set of chromosomes, as sets of chromosomes are being genotyped. A genome scan following this modified protocol can be performed using a maximum amount of 2n5 µg of genomic DNA per individual, isolated from either blood or from mouth swabs
    corecore