11 research outputs found

    Using Remote Sensing and Detection of Early Season Invasives (DESI) to Analyze the Temporal Dynamics of Invasive Cheatgrass (Bromus tectorum)

    Get PDF
    The invasion of exotic annual grasses during the last century has transformed plant habitats and communities worldwide. Cheatgrass (Bromus tectorum) is a winter annual grass that has invaded over 100 million acres of the western United States (Pellant and Hall, 1994. Pellant, 1996). Cheatgrass quickly utilizes available resources especially after a disturbance to the landscape. A major impact of invasion is the increased frequency in fires (D’Antonio and Vitousek, 1992). As cheatgrass is highly successful at invading open and disturbed landscapes at a rapid pace it increases the frequency and severity of fires in arid landscapes (Brooks, 2005). Cheatgrass’ prolific seed production and flammability allows it to competitively exclude native plant species (Seabloom et al., 2003). The successful life strategy of cheatgrass gives a unique spectral image reflectance that can allow the use of remote sensing platforms to track and locate invasions

    Using Hotspot Analysis and Detection of Early Season Invasives (DESI) to analyze the temporal and spatial dynamics of invasive cheatgrass (Bromus tectorum).

    Get PDF
    The invasion of exotic annual grasses during the last century has transformed plant habitats and communities worldwide. Cheatgrass (Bromus tectorum) is a winter annual grass that has invaded over 100 million acres of the western United States (Pellant and Hall, 1994. Pellant, 1996). Cheatgrass quickly utilizes available resources especially after a disturbance to the landscape. A major impact of invasion is the increased frequency in fires (D’Antonio and Vitousek, 1992). As cheatgrass is highly successful at invading open and disturbed landscapes at a rapid pace it increases the frequency and severity of fires in arid landscapes (Brooks, 2005). Cheatgrass’ prolific seed production and flammability allows it to competitively exclude native plant species (Seabloom et al., 2003). The successful life strategy of cheatgrass gives a unique spectral image reflectance that can allow the use of remote sensing platforms to track and locate invasions

    Acute pain pathways:protocol for a prospective cohort study

    Get PDF
    INTRODUCTION: Opioid analgesics are often used to treat moderate-to-severe acute non-cancer pain; however, there is little high-quality evidence to guide clinician prescribing. An essential element to developing evidence-based guidelines is a better understanding of pain management and pain control among individuals experiencing acute pain for various common diagnoses. METHODS AND ANALYSIS: This multicentre prospective observational study will recruit 1550 opioid-naïve participants with acute pain seen in diverse clinical settings including primary/urgent care, emergency departments and dental clinics. Participants will be followed for 6 months with the aid of a patient-centred health data aggregating platform that consolidates data from study questionnaires, electronic health record data on healthcare services received, prescription fill data from pharmacies, and activity and sleep data from a Fitbit activity tracker. Participants will be enrolled to represent diverse races and ethnicities and pain conditions, as well as geographical diversity. Data analysis will focus on assessing patients’ patterns of pain and opioid analgesic use, along with other pain treatments; associations between patient and condition characteristics and patient-centred outcomes including resolution of pain, satisfaction with care and long-term use of opioid analgesics; and descriptive analyses of patient management of leftover opioids. ETHICS AND DISSEMINATION: This study has received approval from IRBs at each site. Results will be made available to participants, funders, the research community and the public. TRIAL REGISTRATION NUMBER: NCT04509115

    The impact of the initial COVID-19 outbreak on young adults’ mental health: a longitudinal study of risk and resilience factors

    Get PDF
    Few studies assessing the effects of COVID-19 on mental health include prospective markers of risk and resilience necessary to understand and mitigate the combined impacts of the pandemic, lockdowns, and other societal responses. This population-based study of young adults includes individuals from the Neuroscience in Psychiatry Network (n = 2403) recruited from English primary care services and schools in 2012–2013 when aged 14–24. Participants were followed up three times thereafter, most recently during the initial outbreak of the COVID-19 outbreak when they were aged between 19 and 34. Repeated measures of psychological distress (K6) and mental wellbeing (SWEMWBS) were supplemented at the latest assessment by clinical measures of depression (PHQ-9) and anxiety (GAD-7). A total of 1000 participants, 42% of the original cohort, returned to take part in the COVID-19 follow-up; 737 completed all four assessments [mean age (SD), 25.6 (3.2) years; 65.4% female; 79.1% White]. Our findings show that the pandemic led to pronounced deviations from existing mental health-related trajectories compared to expected levels over approximately seven years. About three-in-ten young adults reported clinically significant depression (28.8%) or anxiety (27.6%) under current NHS guidelines; two-in-ten met clinical cut-offs for both. About 9% reported levels of psychological distress likely to be associated with serious functional impairments that substantially interfere with major life activities; an increase by 3% compared to pre-pandemic levels. Deviations from personal trajectories were not necessarily restricted to conventional risk factors; however, individuals with pre-existing health conditions suffered disproportionately during the initial outbreak of the COVID-19 pandemic. Resilience factors known to support mental health, particularly in response to adverse events, were at best mildly protective of individual psychological responses to the pandemic. Our findings underline the importance of monitoring the long-term effects of the ongoing pandemic on young adults’ mental health, an age group at particular risk for the emergence of psychopathologies. Our findings further suggest that maintaining access to mental health care services during future waves, or potential new pandemics, is particularly crucial for those with pre-existing health conditions. Even though resilience factors known to support mental health were only mildly protective during the initial outbreak of the COVID-19 pandemic, it remains to be seen whether these factors facilitate mental health in the long term

    Data from: Loss of biotic resistance and high propagule pressure promote invasive grass-fire cycles

    No full text
    1. The spread of invasive grasses across Earth are modifying fire cycles resulting in state changes in arid ecosystems. Disturbance, biotic resistance of native biological communities and propagule pressure, are likely important factors influencing the spread of invasive grasses and their influence on changing fire regimes. 2. Over a five-year period (2011-2016), we tested how the potential loss of biotic resistance of native plant and native rodent communities related to fire and rodent exclusion treatments, in concert with increased propagule pressure affected the establishment of Bromus tectorum L. (cheatgrass) and the spread of secondary fires. 3. Our study results suggest that native plant and native rodent communities contribute to biotic resistance against cheatgrass invasion and that fire and high propagule pressure act to diminish biotic resistance by native communities. Five years into the study, cheatgrass establishment was 11-fold greater in burned plots than in unburned plots (with native plant communities still intact), 2.4-fold greater in rodent exclusion plots than rodent access plots, and 1.8-fold greater with increased propagule pressure. At the start of the experiment in 2011 and into 2012 there was very little cheatgrass in the experimental blocks (<1 plant m-2). However, by 2016, burned-rodent excluded plots were fully invaded (1625 stems m-2). High propagule pressure released cheatgrass from biotic resistance of rodent communities in post-fire conditions but had minimal effects on the biotic resistance of native plant communities in unburned plots. Fire in combination with either rodent exclusion or high cheatgrass propagule pressure produced higher density cheatgrass stands that were positively correlated with the spread of secondary fires that are characteristic of invasive grass-fire cycles. 4. Synthesis. Loss of native plant cover or reduction in rodent populations due to fire, extreme climatic events or disease outbreaks, which are increasing with human activity, may provide windows of opportunity for invasive grasses to escape biotic resistance and reinforce invasive grass-fire cycles

    Data from: Loss of biotic resistance and high propagule pressure promote invasive grass-fire cycles

    No full text
    1. The spread of invasive grasses across Earth are modifying fire cycles resulting in state changes in arid ecosystems. Disturbance, biotic resistance of native biological communities and propagule pressure, are likely important factors influencing the spread of invasive grasses and their influence on changing fire regimes. 2. Over a five-year period (2011-2016), we tested how the potential loss of biotic resistance of native plant and native rodent communities related to fire and rodent exclusion treatments, in concert with increased propagule pressure affected the establishment of Bromus tectorum L. (cheatgrass) and the spread of secondary fires. 3. Our study results suggest that native plant and native rodent communities contribute to biotic resistance against cheatgrass invasion and that fire and high propagule pressure act to diminish biotic resistance by native communities. Five years into the study, cheatgrass establishment was 11-fold greater in burned plots than in unburned plots (with native plant communities still intact), 2.4-fold greater in rodent exclusion plots than rodent access plots, and 1.8-fold greater with increased propagule pressure. At the start of the experiment in 2011 and into 2012 there was very little cheatgrass in the experimental blocks (<1 plant m-2). However, by 2016, burned-rodent excluded plots were fully invaded (1625 stems m-2). High propagule pressure released cheatgrass from biotic resistance of rodent communities in post-fire conditions but had minimal effects on the biotic resistance of native plant communities in unburned plots. Fire in combination with either rodent exclusion or high cheatgrass propagule pressure produced higher density cheatgrass stands that were positively correlated with the spread of secondary fires that are characteristic of invasive grass-fire cycles. 4. Synthesis. Loss of native plant cover or reduction in rodent populations due to fire, extreme climatic events or disease outbreaks, which are increasing with human activity, may provide windows of opportunity for invasive grasses to escape biotic resistance and reinforce invasive grass-fire cycles

    Clinical use of quantitative molecular methods in studying human immunodeficiency virus type 1 infection

    No full text

    Enhanced infection prophylaxis reduces mortality in severely immunosuppressed HIV-infected adults and older children initiating antiretroviral therapy in Kenya, Malawi, Uganda and Zimbabwe: the REALITY trial

    Get PDF
    Meeting abstract FRAB0101LB from 21st International AIDS Conference 18–22 July 2016, Durban, South Africa. Introduction: Mortality from infections is high in the first 6 months of antiretroviral therapy (ART) among HIV‐infected adults and children with advanced disease in sub‐Saharan Africa. Whether an enhanced package of infection prophylaxis at ART initiation would reduce mortality is unknown. Methods: The REALITY 2×2×2 factorial open‐label trial (ISRCTN43622374) randomized ART‐naïve HIV‐infected adults and children >5 years with CD4 <100 cells/mm3. This randomization compared initiating ART with enhanced prophylaxis (continuous cotrimoxazole plus 12 weeks isoniazid/pyridoxine (anti‐tuberculosis) and fluconazole (anti‐cryptococcal/candida), 5 days azithromycin (anti‐bacterial/protozoal) and single‐dose albendazole (anti‐helminth)), versus standard‐of‐care cotrimoxazole. Isoniazid/pyridoxine/cotrimoxazole was formulated as a scored fixed‐dose combination. Two other randomizations investigated 12‐week adjunctive raltegravir or supplementary food. The primary endpoint was 24‐week mortality. Results: 1805 eligible adults (n = 1733; 96.0%) and children/adolescents (n = 72; 4.0%) (median 36 years; 53.2% male) were randomized to enhanced (n = 906) or standard prophylaxis (n = 899) and followed for 48 weeks (3.8% loss‐to‐follow‐up). Median baseline CD4 was 36 cells/mm3 (IQR: 16–62) but 47.3% were WHO Stage 1/2. 80 (8.9%) enhanced versus 108(12.2%) standard prophylaxis died before 24 weeks (adjusted hazard ratio (aHR) = 0.73 (95% CI: 0.54–0.97) p = 0.03; Figure 1) and 98(11.0%) versus 127(14.4%) respectively died before 48 weeks (aHR = 0.75 (0.58–0.98) p = 0.04), with no evidence of interaction with the two other randomizations (p > 0.8). Enhanced prophylaxis significantly reduced incidence of tuberculosis (p = 0.02), cryptococcal disease (p = 0.01), oral/oesophageal candidiasis (p = 0.02), deaths of unknown cause (p = 0.02) and (marginally) hospitalisations (p = 0.06) but not presumed severe bacterial infections (p = 0.38). Serious and grade 4 adverse events were marginally less common with enhanced prophylaxis (p = 0.06). CD4 increases and VL suppression were similar between groups (p > 0.2). Conclusions: Enhanced infection prophylaxis at ART initiation reduces early mortality by 25% among HIV‐infected adults and children with advanced disease. The pill burden did not adversely affect VL suppression. Policy makers should consider adopting and implementing this low‐cost broad infection prevention package which could save 3.3 lives for every 100 individuals treated

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore