33,200 research outputs found

    Proust's Comparisons and Contrasts

    Get PDF

    A Component-oriented Framework for Autonomous Agents

    Get PDF
    The design of a complex system warrants a compositional methodology, i.e., composing simple components to obtain a larger system that exhibits their collective behavior in a meaningful way. We propose an automaton-based paradigm for compositional design of such systems where an action is accompanied by one or more preferences. At run-time, these preferences provide a natural fallback mechanism for the component, while at design-time they can be used to reason about the behavior of the component in an uncertain physical world. Using structures that tell us how to compose preferences and actions, we can compose formal representations of individual components or agents to obtain a representation of the composed system. We extend Linear Temporal Logic with two unary connectives that reflect the compositional structure of the actions, and show how it can be used to diagnose undesired behavior by tracing the falsification of a specification back to one or more culpable components

    Spin-2 Amplitudes in Black-Hole Evaporation

    Full text link
    Quantum amplitudes for s=2s=2 gravitational-wave perturbations of Einstein/scalar collapse to a black hole are treated by analogy with s=1s=1 Maxwell perturbations. The spin-2 perturbations split into parts with odd and even parity. We use the Regge-Wheeler gauge; at a certain point we make a gauge transformation to an asymptotically-flat gauge, such that the metric perturbations have the expected falloff behaviour at large radii. By analogy with s=1s=1, for s=2s=2 natural 'coordinate' variables are given by the magnetic part Hij(i,j=1,2,3)H_{ij} (i,j=1,2,3) of the Weyl tensor, which can be taken as boundary data on a final space-like hypersurface ΣF\Sigma_F. For simplicity, we take the data on the initial surface ΣI\Sigma_I to be exactly spherically-symmetric. The (large) Lorentzian proper-time interval between ΣI\Sigma_I and ΣF\Sigma_F, measured at spatial infinity, is denoted by TT. We follow Feynman's +iϵ+i\epsilon prescription and rotate TT into the complex: TTexp(iθ)T\to{\mid}T{\mid} \exp(-i\theta), for 0<θπ/20<\theta\leq\pi/2. The corresponding complexified {\it classical} boundary-value problem is expected to be well-posed. The Lorentzian quantum amplitude is recovered by taking the limit as θ0+\theta\to 0_+. For boundary data well below the Planck scale, and for a locally supersymmetric theory, this involves only the semi-classical amplitude exp(iSclass(2)\exp(iS^{(2)}_{\rm class}, where Sclass(2)S^{(2)}_{\rm class} denotes the second-variation classical action. The relations between the s=1s=1 and s=2s=2 natural boundary data, involving supersymmetry, are investigated using 2-component spinor language in terms of the Maxwell field strength ϕAB=ϕ(AB)\phi_{AB}=\phi_{(AB)} and the Weyl spinor ΨABCD=Ψ(ABCD)\Psi_{ABCD}=\Psi_{(ABCD)}

    PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons

    Get PDF
    We identify a novel regime of soliton-plasma interactions in which high-intensity ultrashort pulses of intermediate soliton order undergo coherent plasma-induced fission. Experimental results obtained in gas-filled hollow-core photonic crystal fibers are supported by rigorous numerical simulations. The cumulative blueshift of higher-order input solitons with ionizing intensities results in pulse splitting before the ultimate self-compression point, leading to the generation of robust pulse pairs with PHz bandwidths. The novel dynamics closes the gap between plasma-induced adiabatic soliton compression and modulational instability

    Relationship between seismicity and geologic structure in the Southern California region

    Get PDF
    Data from 10,126 earthquakes that occurred in the southern California region between 1934 and 1963 have been synthesized in the attempt to understand better their relationship to regional geologic structure, which is here dominated by a system of faults related mainly to the San Andreas system. Most of these faults have been considered “active” from physiographic evidence, but both geologic and short-term seismic criteria for “active” versus “inactive” faults are generally inadequate. Of the large historic earthquakes that have been associated with surficial fault displacements, most and perhaps all were on major throughgoing faults having a previous history of extensive Quaternary displacements. The same relationship holds for most earthquakes down to magnitude 6.0, but smaller shocks are much more randomly spread throughout the region, and most are not clearly associated with any mappable surficial faults. Virtually all areas of high seismicity in this region fall within areas having numerous Quaternary fault scarps, but not all intensely faulted areas have been active during this particular 29-year period. Strain-release maps show high activity in the Salton trough, the Agua Blanca-San Miguel fault region of Baja California, most of the Transverse Ranges, the central Mojave Desert, and the Owens Valley-southern Sierra Nevada region. Areas of low activity include the San Diego region, the western and easternmost Mojave Desert, and the southern San Joaquin Valley. Because these areas also generally lack Quaternary faults, they probably represent truly stable blocks. In contrast, regions of low seismicity during this period that show widespread Quaternary faulting include the San Andreas fault within and north of the Transverse Ranges, the Garlock fault, and several quiescent zones along major faults within otherwise very active regions. We suspect that seismic quiescence in large areas may be temporary and that they represent likely candidates for future large earthquakes. Without more adequate geodetic control, however, it is not known that strain is necessarily accumulating in all of these areas. Even in areas of demonstrated regional shearing, the relative importance of elastic strain accumulation versus fault slippage is unknown, although slippage is clearly not taking place everywhere along major “active” faults of the region. Recurrence curves of earthquake magnitude versus frequency are presented for six tectonically distinct 8500-km^2 areas within the region. They suggest either that an area of this small size or that a sample period of only 29 years is insufficient for establishing valid recurrence expectancies; on this basis the San Andreas fault would be the least hazardous zone of the region, because only a few small earthquakes have occurred here during this particular period. Although recurrence expectancies apparently break down for these smaller areas, historic records suggest that the calculated recurrence rate of 52 years for M = 8.0 earthquakes for the entire region may well be valid. Neither a fault map nor the 29-year seismic record provides sufficient information for detailed seismic zoning maps; not only are many other geologic factors important in determining seismic risk, but the strain-release or epicenter map by itself may give a partially reversed picture of future seismic expectance. Seismic and structural relationships suggest that the fault theory still provides the most satisfactory explanation of earthquakes in this region
    corecore