10 research outputs found

    Molecular interplay betweeen cáncer cell fatty acid metabolism and oncogenic signaling as resource for novel treatment strategies against ovarian cancer

    Get PDF
    The metabolic oncogene fatty acid synthase (FASN) is overexpressed in 80% of ovarian cancers (OC) and indicates poor prognosis. Exposure of OC to inhibitors of FASN elicits a complex stress response that interferes with receptor-PI3K-mTORC1 signaling (briefly designated 'PI3K pathway'). Here we demonstrate that FASN inhibitors capitalize on multiple mechanisms to interfere with the PI3K pathway, and that silencing this cascade is crucial for the anticancer action of the drugs

    Membrane disruption, but not metabolic rewiring, is the key mechanism of anticancer-action of FASN-inhibitors: a multi-omics analysis in ovarian cancer.

    Get PDF
    Fatty-acid(FA)-synthase(FASN) is a druggable lipogenic oncoprotein whose blockade causes metabolic disruption. Whether drug-induced metabolic perturbation is essential for anticancer drug-action, or is just a secondary-maybe even a defence response-is still unclear. To address this, SKOV3 and OVCAR3 ovarian cancer(OC) cell lines with clear cell and serous histology, two main OC subtypes, were exposed to FASN-inhibitor G28UCM. Growth-inhibition was compared with treatment-induced cell-metabolomes, lipidomes, proteomes and kinomes. SKOV3 and OVCAR3 were equally sensitive to low-dose G28UCM, but SKOV3 was more resistant than OVCAR3 to higher concentrations. Metabolite levels generally decreased upon treatment, but individual acylcarnitines, glycerophospholipids, sphingolipids, amino-acids, biogenic amines, and monosaccharides reacted differently. Drug-induced effects on central-carbon-metabolism and oxidative-phosphorylation (OXPHOS) were essentially different in the two cell lines, since drug-naïve SKOV3 are known to prefer glycolysis, while OVCAR3 favour OXPHOS. Moreover, drug-dependent increase of desaturases and polyunsaturated-fatty-acids (PUFAs) were more pronounced in SKOV3 and appear to correlate with G28UCM-tolerance. In contrast, expression and phosphorylation of proteins that control apoptosis, FA synthesis and membrane-related processes (beta-oxidation, membrane-maintenance, transport, translation, signalling and stress-response) were concordantly affected. Overall, membrane-disruption and second-messenger-silencing were crucial for anticancer drug-action, while metabolic-rewiring was only secondary and may support high-dose-FASN-inhibitor-tolerance. These findings may guide future anti-metabolic cancer intervention.The authors would like to thank Kratos/Shimadzu (Manchester, UK) for providing the MALDI-MS instrumentation used in this study and Dr. Steven Pelech (Kinexus Bioinformatics Corp, Vancouver, BC, Canada) for initial instruction in antibody microarray kinomic analysis. This work was financially supported by the Medical Scientific Fund of the Mayor of the City of Vienna, by the ‘Initiative Krebsforschung’ of the Medical University of Vienna, and by the Herzfelder Familienstiftung, Vienna, Austria.S

    Experimental Dermatology / Inactivation of autophagy leads to changes in sebaceous gland morphology and function

    No full text
    We have reported recently that inactivation of the essential autophagyrelated gene 7 (Atg7) in keratinocytes has little or no impact on morphology and function of the epidermal barrier in experimental animals. When these mice aged, mutant males, (Atg7 KC), developed an oily coat. As the keratin 14 promoter driven cre/LoxP system inactivates floxed Atg7 in all keratin 14 (K14) expressing cells, including sebocytes, we investigated whether the oily hair phenotype was the consequence of changes in function of the skin sebaceous glands. Using an antibody to the GFPLC3 fusion protein, autophagosomes were detected at the border of sebocyte disintegration in control but not in mutant animals, suggesting that autophagy was (a) active in normal sebaceous glands and (b) was inactivated in the mutant mice. Detailed analysis established that dorsal sebaceous glands were about twice as large in all Atg7 KC mice compared to those of controls (Atg7 F/F), and their rate of sebocyte proliferation was increased. In addition, male mutant mice yielded twice as much lipid per unit hair as agematched controls. Analysis of sebum lipids by thin layer chromatography revealed a 40% reduction in the proportion of free fatty acids (FFA) and cholesterol, and a 5fold increase in the proportion of fatty acid methyl esters (FAME). In addition, the most common diester wax species (5860 carbon atoms) were increased, while shorter species (5455 carbon atoms) were underrepresented in mutant sebum. Our data show that autophagy contributes to sebaceous gland function and to the control of sebum composition.(VLID)339839

    Molecular interplay betweeen cáncer cell fatty acid metabolism and oncogenic signaling as resource for novel treatment strategies against ovarian cancer

    No full text
    The metabolic oncogene fatty acid synthase (FASN) is overexpressed in 80% of ovarian cancers (OC) and indicates poor prognosis. Exposure of OC to inhibitors of FASN elicits a complex stress response that interferes with receptor-PI3K-mTORC1 signaling (briefly designated 'PI3K pathway'). Here we demonstrate that FASN inhibitors capitalize on multiple mechanisms to interfere with the PI3K pathway, and that silencing this cascade is crucial for the anticancer action of the drugs

    Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells

    No full text
    Ovarian cancer (OC) is caused by genetic aberrations in networks that control growth and survival. Importantly, aberrant cancer metabolism interacts with oncogenic signaling providing additional drug targets. Tumors overexpress the lipogenic enzyme fatty acid synthase (FASN) and are inhibited by FASN blockers, whereas normal cells are FASN-negative and FASN-inhibitor-resistant. Here, we demonstrate that this holds true when ovarian/oviductal cells reside in their autochthonous tissues, whereas in culture they express FASN and are FASN-inhibitor-sensitive. Upon subculture, nonmalignant cells cease growth, express senescence-associated β-galactosidase, lose FASN and become FASN-inhibitor-resistant. Immortalized ovarian/oviductal epithelial cell lines although resisting senescence reveal distinct growth activities, which correlate with FASN levels and FASN drug sensitivities. Accordingly, ectopic FASN stimulates growth in these cells. Moreover, FASN levels and lipogenic activities affect cellular lipid composition as demonstrated by thin-layer chromatography. Correlation between proliferation and FASN levels was finally evaluated in cancer cells such as HOC-7, which contain subclones with variable differentiation/senescence and corresponding FASN expression/FASN drug sensitivity. Interestingly, senescent phenotypes can be induced in parental HOC-7 by differentiating agents. In OC cells, FASN drugs induce cell cycle blockade in S and/or G2/M and stimulate apoptosis, whereas in normal cells they only cause cell cycle deceleration without apoptosis. Thus, normal cells, although growth-inhibited, may survive and recover from FASN blockade, whereas malignant cells get extinguished. FASN expression and FASN drug sensitivity are directly linked to cell growth and correlate with transformation/differentiation/senescence only indirectly. FASN is therefore a metabolic marker of cell proliferation rather than a marker of malignancy and is a useful target for future drug development
    corecore