26 research outputs found

    Single-cell mRNA transfection studies: Delivery, kinetics and statistics by numbers

    Get PDF
    AbstractIn artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose–response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs.From the Clinical EditorThis team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules

    Least Dependent Component Analysis Based on Mutual Information

    Get PDF
    We propose to use precise estimators of mutual information (MI) to find least dependent components in a linearly mixed signal. On the one hand this seems to lead to better blind source separation than with any other presently available algorithm. On the other hand it has the advantage, compared to other implementations of `independent' component analysis (ICA) some of which are based on crude approximations for MI, that the numerical values of the MI can be used for: (i) estimating residual dependencies between the output components; (ii) estimating the reliability of the output, by comparing the pairwise MIs with those of re-mixed components; (iii) clustering the output according to the residual interdependencies. For the MI estimator we use a recently proposed k-nearest neighbor based algorithm. For time sequences we combine this with delay embedding, in order to take into account non-trivial time correlations. After several tests with artificial data, we apply the resulting MILCA (Mutual Information based Least dependent Component Analysis) algorithm to a real-world dataset, the ECG of a pregnant woman. The software implementation of the MILCA algorithm is freely available at http://www.fz-juelich.de/nic/cs/softwareComment: 18 pages, 20 figures, Phys. Rev. E (in press

    A simple and safe bedside method of transpyloric feeding tube placement in critically ill patients

    No full text

    Hierarchical clustering using mutual information

    No full text
    We present a conceptually simple method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X, Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use this both in the Shannon (probabilistic) version of information theory and in the Kolmogorov (algorithmic) version. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and to the output of independent components analysis (ICA) as illustrated with the ECG of a pregnant woman
    corecore