139 research outputs found

    Enhanced Recovery After Surgery (ERAS) Pathways for Aesthetic Breast Surgery: A Prospective Cohort Study on Patient-Reported Outcomes

    Get PDF
    Background Patients’ expectations of an anticipated timeline of recovery and fear of anesthesia in aesthetic breast surgery have not been studied. Objective This study aims to assess patient anxiety, expectations, and satisfaction after Enhanced Recovery after Surgery (ERAS) pathways for aesthetic breast surgery and the progress of postoperative recovery. Materials and methods All consecutive patients who underwent aesthetic breast surgery between April 2021 and August 2022 were included in this single-center prospective cohort study. The ERAS protocol consists of more than 20 individual measures in the pre-, intra-, and postoperative period. Epidemiological data, expectations, and recovery were systematically assessed with standardized self-assessment questionnaires, including the International Pain Outcome Questionnaire (IPO), the BREAST-Q or BODY-Q, and data collection forms. Results In total, 48 patients with a median of 30 years of age were included. Patients returned to most daily activities within 5 days. Eighty-eight percent of patients were able to accomplish daily activities sooner than expected. The time of return to normal daily activities was similar across all procedure types. There was no statistically significant difference regarding postoperative satisfaction between patients who recovered slower (12%) and patients who recovered as fast or faster (88%) than anticipated (p=0.180). Patients reporting fear of anesthesia in the form of conscious sedation significantly diminished from 17 to 4% postoperatively (p<0.001). Conclusion Enhanced Recovery after Surgery (ERAS) pathways for aesthetic breast surgery are associated with rapid recovery and high patient satisfaction. This survey study provides valuable insight into patients’ concerns and perspectives that may be implemented in patient education and consultations to improve patient satisfaction following aesthetic treatments. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

    Purifying Selection and Molecular Adaptation in the Genome of Verminephrobacter, the Heritable Symbiotic Bacteria of Earthworms

    Get PDF
    While genomic erosion is common among intracellular symbionts, patterns of genome evolution in heritable extracellular endosymbionts remain elusive. We study vertically transmitted extracellular endosymbionts (Verminephrobacter, Betaproteobacteria) that form a beneficial, species-specific, and evolutionarily old (60–130 Myr) association with earthworms. We assembled a draft genome of Verminephrobacter aporrectodeae and compared it with the genomes of Verminephrobacter eiseniae and two nonsymbiotic close relatives (Acidovorax). Similar to V. eiseniae, the V. aporrectodeae genome was not markedly reduced in size and showed no A–T bias. We characterized the strength of purifying selection (ω = dN/dS) and codon usage bias in 876 orthologous genes. Symbiont genomes exhibited strong purifying selection (ω = 0.09 ± 0.07), although transition to symbiosis entailed relaxation of purifying selection as evidenced by 50% higher ω values and less codon usage bias in symbiont compared with reference genomes. Relaxation was not evenly distributed among functional gene categories but was overrepresented in genes involved in signal transduction and cell envelope biogenesis. The same gene categories also harbored instances of positive selection in the Verminephrobacter clade. In total, positive selection was detected in 89 genes, including also genes involved in DNA metabolism, tRNA modification, and TonB-dependent iron uptake, potentially highlighting functions important in symbiosis. Our results suggest that the transition to symbiosis was accompanied by molecular adaptation, while purifying selection was only moderately relaxed, despite the evolutionary age and stability of the host association. We hypothesize that biparental transmission of symbionts and rare genetic mixing during transmission can prevent genome erosion in heritable symbionts

    New insights into stop codon recognition by eRF1

    Get PDF
    In eukaryotes, translation termination is performed by eRF1, which recognizes stop codons via its N-terminal domain. Many previous studies based on point mutagenesis, cross-linking experiments or eRF1 chimeras have investigated the mechanism by which the stop signal is decoded by eRF1. Conserved motifs, such as GTS and YxCxxxF, were found to be important for termination efficiency, but the recognition mechanism remains unclear. We characterized a region of the eRF1 N-terminal domain, the P1 pocket, that we had previously shown to be involved in termination efficiency. We performed alanine scanning mutagenesis of this region, and we quantified in vivo readthrough efficiency for each alanine mutant. We identified two residues, arginine 65 and lysine 109, as critical for recognition of the three stop codons. We also demonstrated a role for the serine 33 and serine 70 residues in UGA decoding in vivo. NMR analysis of the alanine mutants revealed that the correct conformation of this region was controlled by the YxCxxxF motif. By combining our genetic data with a structural analysis of eRF1 mutants, we were able to formulate a new model in which the stop codon interacts with eRF1 through the P1 pocket
    • …
    corecore