199 research outputs found

    Droplet settling on solids coated with a soft layer

    Full text link
    Gravitational settling of a droplet in air onto a soft substrate is a ubiquitous event relevant to many natural processes and engineering applications. We study this phenomenon by developing a three-phase lubrication model of droplet settling onto a solid substrate coated by a thin soft layer represented by a viscous film, an elastic compressible layer and an elastic sheet supported by a viscous film. By combining scaling analysis, analytical methods, and numerical simulations we elucidate how the resulting droplet dynamics is affected by the nature of the soft layer. We show that these soft layers can significantly affect the droplet shape during gravitational settling. When there is a linear response of the deformations of the soft layer, the air layer takes longer to drain as compared to the case of a droplet settling onto a rigid substrate. Our results provide new insight into the coupled interactions between droplets and solids coated by a thin film of a soft material.Comment: 26 pages, 13 figures, 1 tabl

    Design of novel γ’ bondcoats and interdiffusion with Re-rich superalloys

    Get PDF
    Increasing the life of thermal barrier coating (TBC) systems critically relies on maintaining good adhesion between the bondcoat, the thermally grown oxide (TGO) and the topcoat. A common cause of failure, rumpling occurs as stress generated by oxide growth and thermal cycling results in creep of the mechanically weak bondcoat – this currently limits the life of EB-PVD TBCs with ÎČ coatings used in aircraft turbine blades and vanes. γ’ coatings are known to present a better creep strength than ÎČ coatings and thereby markedly reduce rumpling, while still offering adequate oxidation resistance. The higher solubility of reactive elements (RE) in γ’ also provides more flexibility in optimizing RE additions, as it limits the risk of overdoping; this can be used to further improve TGO adhesion. Furthermore, γ’ compositions can, by essence, be adjusted to reduce the chemical potential mismatch with the substrate; this in turn will help curb the development of secondary reaction zones, which have become an issue when ÎČ coatings are used on Re-containing superalloys. The poster will present recent efforts made at ONERA in the development of new γ’ compositions for Re-rich substrates. Our current design strategy focuses on limiting substrate-coating interdiffusion and the associated loss of load-bearing section in the alloy. As mechanical properties improve and the bondcoat Al content is reduced, however, the bondcoat ability to maintain exclusive Al2O3 formation throughout extended cycling becomes critical to the system durability. Coating compositions are thus adjusted to a given alloy following the “equilibrium coating” concept, and then slightly modified to help maintain an appropriate composition relative to oxidation resistance. Compositions are assessed through the study of interdiffusion profiles obtained from both experiments and numerical simulations via a finite-difference method

    Machine-driven parameter screen of biochemical reactions

    Get PDF
    The development of complex methods in molecular biology is a laborious, costly, iterative and often intuition-bound process where optima are sought in a multidimensional parameter space through step-by-step optimizations. The difficulty of miniaturizing reactions under the microliter volumes usually handled in multiwell plates by robots, plus the cost of the experiments, limit the number of parameters and the dynamic ranges that can be explored. Nevertheless, because of non-linearities of the response of biochemical systems to their reagent concentrations, broad dynamic ranges are necessary. Here we use a high-performance nanoliter handling platform and computer generation of liquid transfer programs to explore in quadruplicates 648 combinations of 4 parameters of a biochemical reaction, the reverse-transcription, which lead us to uncover non-linear responses, parameter interactions and novel mechanistic insights. With the increased availability of computer-driven laboratory platforms for biotechnology, our results demonstrate the feasibility and advantage of methods development based on reproducible, computer-aided exhaustive characterization of biochemical systems

    Particle motion induced by bubble cavitation

    Get PDF
    Cavitation bubbles induce impulsive forces on surrounding substrates, particles, or surfaces. Even though cavitation is a traditional topic in fluid mechanics, current understanding and studies do not capture the effect of cavitation on suspended objects in fluids. In the present work, the dynamics of a spherical particle due to a cavitation bubble is experimentally characterized and compared with an analytical model. Three phases are observed: the growth of the bubble where the particle is pushed away, its collapse where the particle approaches the bubble, and a longer time scale postcollapse where the particle continues to move toward the collapsed bubble. The particle motion in the longer time scale presumably results from the asymmetric cavitation evolution at an earlier time. Our theory considering the asymmetric bubble dynamics shows that the particle velocity strongly depends on the distance from the bubble as an inverse-fourth-power law, which is in good agreement with our experimentation. This study sheds light on how small free particles respond to cavitation bubbles in fluids

    Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers

    Get PDF
    We report on infrared supercontinuum (SC) generation through subsequent nonlinear propagation in concatenated step-index fluoride and As2Se3 fiber. These fibers were pumped by an all-fiber laser source based on an erbium amplifier followed by a thulium power amplifier. ZBLAN and InF3 fibers were compared for the concatenated scheme. The broadest SC produced was achieved by optimizing the length of the InF3 fiber. This arrangement allowed the generation of 200 mW infrared SC with high spectral flatness and spanning from 1.4 ÎŒm to 6.4 ÎŒm

    Epsilon toxin from C lostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination

    Get PDF
    International audienceEpsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9) M and 10(-7) M) binds to oligodendrocytes, but not to astrocytes. ET induces an increase in extracellular glutamate, and produces oscillations of intracellular Ca(2+) concentration in oligodendrocytes. These effects occurred without any change in the transmembrane resistance of oligodendrocytes, underlining that ET acts through a pore-independent mechanism. Pharmacological investigations revealed that the Ca(2+) oscillations are caused by the ET-induced rise in extracellular glutamate concentration. Indeed, the blockade of metabotropic glutamate receptors type 1 (mGluR1) prevented ET-induced Ca(2+) signals. Activation of the N-methyl-D-aspartate receptor (NMDA-R) is also involved, but to a lesser extent. Oligodendrocytes are responsible for myelinating neuronal axons. Using organotypic cultures of cerebellar slices, we found that ET induced the demyelination of Purkinje cell axons within 24 h. As this effect was suppressed by antagonizing mGluR1 and NMDA-R, demyelination is therefore caused by the initial ET-induced rise in extracellular glutamate concentration. This study reveals the novel possibility that ET can act on oligodendrocytes, thereby causing demyelination. Moreover, it suggests that for certain cell types such as oligodendrocytes, ET can act without forming pores, namely through the activation of an undefined receptor-mediated pathway

    Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes

    Get PDF
    International audienceHigh-throughput sequencing of Prasinovirus DNA polymerase and host green algal (Mamiellophyceae) ribosomal RNA genes was used to analyse the diversity and distribution of these taxa over a ∌10 000 km latitudinal section of the Indian Ocean. New viral and host groups were identified among the different trophic conditions observed, and highlighted that although unknown prasinoviruses are diverse, the cosmopolitan algal genera Bathycoccus, Micromonas and Ostreococcus represent a large proportion of the host diversity. While Prasinovirus communities were correlated to both the geography and the environment, host communities were not, perhaps because the genetic marker used lacked sufficient resolution. Nevertheless, analysis of single environmental variables showed that eutrophic conditions strongly influence the distributions of both hosts and viruses. Moreover, these communities were not correlated, in their composition or specific richness. These observations could result from antagonistic dynamics, such as that illustrated in a prey–predator model, and/or because hosts might be under a complex set of selective pressures. Both of these reasons must be considered to interpret environmental surveys of viruses and hosts, because covariation does not always imply interaction

    Mining-impacted rice paddies select for Archaeal methylators and reveal a putative (Archaeal) regulator of mercury methylation

    Get PDF
    ABSTRACT: Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.21−513 mg kg−1 dry wt. soil; MeHg: 1.21−6.82 ng g−1 dry wt. soil), we resorted to metagenomics to determine the microbial determinants involved in MeHg production under contrasted contamination settings. We show that Hg methylating Archaea, along with methane-cycling genes, were enriched in severely contaminated paddy soils. Metagenome-resolved Genomes of novel putative Hg methylators belonging to Nitrospinota (UBA7883), with poorly resolved taxonomy despite high completeness, showed evidence of facultative anaerobic metabolism and adaptations to fluctuating redox potential. Furthermore, we found evidence of environmental filtering effects that influenced the phylogenies of not only hgcA genes under different THg concentrations, but also of two housekeeping genes, rpoB and glnA, highlighting the need for further experimental validation of whether THg drives the evolution of hgcAB. Finally, assessment of the genomic environment surrounding hgcAB suggests that this gene pair may be regulated by an archaeal toxin-antitoxin (TA) system, instead of the more frequently found arsR-like genes in bacterial methylators. This suggests the presence of distinct hgcAB regulation systems in bacteria and archaea. Our results support the emerging role of Archaea in MeHg cycling under mining-impacted environments and shed light on the differential control of the expression of genes involved in MeHg formation between Archaea and Bacteria

    Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes

    Get PDF
    Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 Όm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts
    • 

    corecore