4 research outputs found

    Nontrivial Polydispersity Exponents in Aggregation Models

    Full text link
    We consider the scaling solutions of Smoluchowski's equation of irreversible aggregation, for a non gelling collision kernel. The scaling mass distribution f(s) diverges as s^{-tau} when s->0. tau is non trivial and could, until now, only be computed by numerical simulations. We develop here new general methods to obtain exact bounds and good approximations of τ\tau. For the specific kernel KdD(x,y)=(x^{1/D}+y^{1/D})^d, describing a mean-field model of particles moving in d dimensions and aggregating with conservation of ``mass'' s=R^D (R is the particle radius), perturbative and nonperturbative expansions are derived. For a general kernel, we find exact inequalities for tau and develop a variational approximation which is used to carry out the first systematic study of tau(d,D) for KdD. The agreement is excellent both with the expansions we derived and with existing numerical values. Finally, we discuss a possible application to 2d decaying turbulence.Comment: 16 pages (multicol.sty), 6 eps figures (uses epsfig), Minor corrections. Notations improved, as published in Phys. Rev. E 55, 546
    corecore