199 research outputs found

    Absorption spectrum of a weakly n-doped semiconductor quantum well

    Full text link
    We calculate, as a function of temperature and conduction band electron density, the optical absorption of a weakly n-doped, idealized semiconductor quantum well. In particular, we focus on the absorption band due to the formation of a charged exciton. We conceptualize the charged exciton as an itinerant excitation intimately linked to the dynamical response of itinerant conduction band electrons to the appearance of the photo-generated valence band hole. Numerical results for the absorption in the vicinity of the exciton line are presented and the spectral weights associated with, respectively, the charged exciton band and the exciton line are analyzed in detail. We find, in qualitative agreement with experimental data, that the spectral weight of the charged exciton grows with increasing conduction band electron density and/or decreasing temperature at the expense of the exciton.Comment: 5 pages, 4 figure

    The trion: two electrons plus one hole versus one electron plus one exciton

    Full text link
    We first show that, for problems dealing with trions, it is totally hopeless to use the standard many-body description in terms of electrons and holes and its associated Feynman diagrams. We then show how, by using the description of a trion as an electron interacting with an exciton, we can obtain the trion absorption through far simpler diagrams, written with electrons and \emph{excitons}. These diagrams are quite novel because, for excitons being not exact bosons, we cannot use standard procedures designed to deal with interacting true fermions or true bosons. A new many-body formalism is necessary to establish the validity of these electron-exciton diagrams and to derive their specific rules. It relies on the ``commutation technique'' we recently developed to treat interacting close-to-bosons. This technique generates a scattering associated to direct Coulomb processes between electrons and excitons and a dimensionless ``scattering'' associated to electron exchange inside the electron-exciton pairs -- this ``scattering'' being the original part of our many-body theory. It turns out that, although exchange is crucial to differentiate singlet from triplet trions, this ``scattering'' enters the absorption explicitly when the photocreated electron and the initial electron have the same spin -- \emph{i}. \emph{e}., when triplet trions are the only ones created -- \emph{but not} when the two spins are different, although triplet trions are also created in this case. The physical reason for this rather surprising result will be given

    Gentrification of peri-urban spaces in France: the surroundings of Nancy

    Get PDF
    The process of gentrification in the peri-urban districts of French cities has scarcely been touched upon in recent research, which has hitherto seen the phenomenon as typically associated with core urban areas. The tendency has been to view the periphery through the lens of the social crisis of the banlieues. In contrast, the present article focuses on gentrification in the metropolitan area of Nancy (Grand Est region) as a development that also plays a role in municipalities around major cities and especially around regional metropolitan centres. Starting with a survey of current research approaches, the article first pinpoints some gaps and methodological imbalances that need to be tackled, before embarking on the case study of peri-urban Nancy. Statistical data and empirical surveys in the form of qualitative interviews indicate how Nancy's peri-urban districts have developed a logic of separation, exclusion and social decoupling - typical features of gentrification - particularly in connection with the construction of new single-family houses as a supplement to existing residential stock. Key questions here concern individual motives for choosing a particular residential location, and the creeping "segregation from above" that accompanies this process. The image of France's peri-urban spaces that arises from this study stands in explicit contrast to the received, markedly negative connotations of the "urban periphery".Gentrifizierungsprozesse in periurbanen Räumen Frankreichs fanden in der Forschung bisher kaum Beachtung; sie wurden als naheliegende Prozesse in Kernstädten verstanden und untersucht. Zudem wurde eher die Krise der Vorstädte, der banlieues, beachtet, womit Stigmatisierung und Ausgrenzung analyseleitend wurden. Im vorliegenden Beitrag wird nun hingegen am Beispiel des Umlandes der Metropole Nancy (Region Grand Est) Gentrifizierung als Entwicklung herausgestellt, die sich ebenfalls als konstitutiv für periurbane Räume und damit kleinere Umlandgemeinden von Städten bzw. insbesondere Metropolen andeutet. Vor dem Hintergrund einer Beleuchtung bisheriger Forschungszugänge werden zunächst Forschungslücken herausgearbeitet. Anhand der Auswertung statistischer Daten und empirischer Erhebungen mittels qualitativer Interviews im Umland von Nancy wird im Anschluss fallstudienbezogen gezeigt, wie sich periurbane Gemeinden, insbesondere in Verbindung mit dem Bau neuer Einfamilienhäuser in Ergänzung zu bestehender Bausubstanz, in eine Gentrifizierungslogik der Ab- und Ausgrenzung einschreiben, welche individuellen Beweggründe Wohnstandortwahlen beeinflussen und wie sich eine "Segregation von oben" immer mehr ausbreitet. Es entsteht so ein verändertes Bild periurbaner Räume, das im expliziten Kontrast zu einer eher negativ konnotierten "urbanen Peripherie" steht

    Magnetic field dependence of the energy of negatively charged excitons in semiconductor quantum wells

    Full text link
    A variational calculation of the spin-singlet and spin-triplet state of a negatively charged exciton (trion) confined to a single quantum well and in the presence of a perpendicular magnetic field is presented. We calculated the probability density and the pair correlation function of the singlet and triplet trion states. The dependence of the energy levels and of the binding energy on the well width and on the magnetic field strength was investigated. We compared our results with the available experimental data on GaAs/AlGaAs quantum wells and find that in the low magnetic field region (B<18 T) the observed transition are those of the singlet and the dark triplet trion (with angular momentum Lz=1L_z=-1), while for high magnetic fields (B>25 T) the dark trion becomes optically inactive and possibly a transition to a bright triplet trion (angular momentum Lz=0L_z=0) state is observed.Comment: 9 pages, 10 figures submitted to Phys. Rev.

    Coexistence of Two Kinds of Fluorinated Hydrogenated Micelles as Building Blocks for the Design of Bimodal Mesoporous Silica with Two Ordered Mesopore Networks

    Get PDF
    A simple and effective route has been developed for the synthesis of bimodal (3.6 and 9.4 nm) mesoporous silica materials that have two ordered interconnected pore networks. Mesostructures have been prepared through the self assembly mechanism by using a mixture of polyoxyethylene fluoroalkyl ether and triblock copolymer as building block. The investigation of the RF8(EO)9/P123/water phase diagram evidences that in the considered surfactant range of concentrations, the system is micellar (L1). DLS measurements indicate that this micellar phase is composed of two types of micelles, the size of the first one at around 7.6 nm corresponds unambiguously to the pure fluorinated micelles. The second type of micelles at higher diameter consists of fluorinated micelles which have accommodated a weak fraction of P123 molecules. Thus, in this study the bimodal mesoporous silica are really templated by two kinds of micelles

    Stability of an Exciton bound to an Ionized Donor in Quantum Dots

    Full text link
    Total energy, binding energy, recombination rate (of the electron hole pair) for an exciton (X) bound in a parabolic two dimensional quantum dot by a donor impurity located on the z axis at a distance d from the dot plane, are calculated by using the Hartree formalism with a recently developed numerical method (PMM) for the solution of the Schroedinger equation. As our analysis indicates there is a critical dot radius such that for radius less than the critical radius the complex is unstable and with an increase of the impurity distance this critical radius increases. Furthermore, there is a critical value of the mass ratio such that for mass ratio less than the critical value the complex is stable. The appearance of this stability condition depends both on the impurity distance and the dot radius, in a way that with an increase of the impurity distance we have an increase in the maximum dot radius where this stability condition appears. For dot radii greater than this maximum dot radius (for fixed impurity distance) the complex is always stable.Comment: 17 pages, 7 figures Applying a new numerical method which is based on the adiabatic stability of quantum mechanics, we study the stability of an exciton (X) bound in a parabolic two dimensional quantum dot by a donor impurity located on the z axis at a distance d from the dot plan

    Excitons and charged excitons in semiconductor quantum wells

    Full text link
    A variational calculation of the ground-state energy of neutral excitons and of positively and negatively charged excitons (trions) confined in a single-quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. The conditional probability distribution for positively and negatively charged excitons is obtained, providing information on the correlation and the charge distribution in the system. A comparison is made with available experimental data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well structures, which indicates that trions become localized with decreasing quantum well width.Comment: 9 pages, 11 figure

    Tailored Jeffamine molecular tools for ordering mesoporous Silica

    Get PDF
    Herein, we report the formation of organized mesoporous silica materials prepared from a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). The behavior of the modified Jeffamine in water was first investigated. A direct micellar phase (L1) and a hexagonal (H1) liquid crystal were found. The structure of the micelles was investigated from the SAXS and the analysis by Generalized Indirect Fourier Transformation (GIFT), which show that the particles are globular of coreshell type. The myristoyl chains, located at the ends of the amphiphile molecule are assembled to form the core of the micelles and, as a consequence, the molecules are folded over on themselves. Mesoporous materials were then synthesized from the self-assembly mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorptiondesorption analysis, transmission and scanning electron microscopy. The results clearly evidence that by modifying the synthesis parameters, such as the surfactant/silica precursor molar ratio and the hydrothermal conditions, one can control the size and the nanostructuring of the resulting material. It was observed that, the lower the temperature of the hydrothermal treatment, the better the mesopore ordering

    Solubilization of decane into gemini surfactant with a modified Jeffamine backbone: Design of hierarchical porous silica

    Get PDF
    Herein, we have investigated the solubilization of decane into a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). Starting from this system, porous silica materials have been prepared. Performing the hydrothermal treatment at low temperature, a slight increase of the mesopore diameter is observed in the presence of decane. Increasing the temperature of the hydrothermal treatment, no swelling effect of decane is detected. By contrast, the pore diameter decreases but better mesopore homogeneity and a larger wall thickness are obtained. At high decane concentration the new myristoyl-end capped Jeffamine/decane/water system forms oil-in-water emulsions, which are used as template for the formation of hierarchical porous silica materials

    Reversal of the Charge Transfer between Host and Dopant Atoms in Semiconductor Nanocrystals

    Full text link
    We present ab initio density functional calculations that show P (Al) dopant atoms in small hydrogen-terminated Si crystals to be negatively (positively) charged. These signs of the dopant charges are reversed relative to the same dopants in bulk Si. We predict this novel reversal of the dopant charge (and electronic character of the doping) to occur at crystal sizes of order 100 Si atoms. We explain it as a result of competition between fundamental principles governing charge transfer in bulk semiconductors and molecules and predict it to occur in nanocrystals of most semiconductors.Comment: 4 pages, 4 figures (3 in color), 2 table
    corecore