4 research outputs found

    Dysfunctional LAT2 amino acid transporter is associated with cataract in mouse and humans

    Get PDF
    Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 (Slc7a8) and uniporter TAT1 (Slc16a10) are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect. Interestingly, the absence of LAT2 led to increased incidence of cataract in mice, in particular in older females, and a synergistic effect was observed with simultaneous lack of TAT1. Screening SLC7A8 in patients diagnosed with congenital or age-related cataract yielded one homozygous single nucleotide deletion segregating in a family with congenital cataract. Expressed in HeLa cells, this LAT2 mutation did not support amino acid uptake. Heterozygous LAT2 variants were also found in patients with cataract some of which showed a reduced transport function when expressed in HeLa cells. Whether heterozygous LAT2 variants may contribute to the pathology of cataract needs to be further investigated. Overall, our results suggest that defects of amino acid transporter LAT2 are implicated in cataract formation, a situation that may be aggravated by TAT1 defects

    Abnormal creatine transport of mutations in monocarboxylate transporter 12 (MCT12) found in patients with age-related cataract can be partially rescued by exogenous chaperone CD147

    No full text
    Membrane transporters influence biological functions in the ocular lens. Here, we investigate the monocarboxylate transporter 12 (MCT12), also called creatine transporter 2 (CRT2), which is found in the ocular lens and is involved in cataract. As the age-related form affects about half of the population world-wide, understanding relevant pathomechanisms is a prerequisite for exploring non-invasive treatments. We screened the coding exons of the gene SLC16A12 in 877 patients from five cohorts, including Caucasian and Asian ethnicities. A previously identified risk factor, SNP rs3740030, displayed different frequencies in the Asian cohorts but risk could not be established. In 15 patients 13 very rare heterozygous nucleotide substitutions were identified, of which eight led to non-synonymous and four to synonymous amino acid exchanges and one mapped to the canonical splice site in intron 3. Their impact on creatine transport was tested in Xenopus laevis oocytes and human HEK293T cells. Four variants (p.Ser158Pro, p.Gly205Val, p.Pro395Gln and p.Ser453Arg) displayed severe reduction in both model systems, indicating conserved function. Two of these, p.Gly205Val, and p.Ser453Arg, did not localize to the oocyte membrane, suggesting possible impacts on protein interactions for transporter processing. In support, exogenously supplied excess of MCT12's chaperone CD147 in HEK293T cells led to a partial recovery of the defective uptake activity from p.Gly205Val and also from mutant p.Pro395Gln, which did localize to the membrane. Our findings provide first insight in the molecular requirements of creatine transporter, with particular emphasis on rescuing effects by its chaperone CD147, which can provide useful pharmacological information for substrate delivery

    Dysfunctional LAT2 Amino Acid Transporter Is Associated With Cataract in Mouse and Humans

    Get PDF
    Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 ) and uniporter TAT1 () are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect. Interestingly, the absence of LAT2 led to increased incidence of cataract in mice, in particular in older females, and a synergistic effect was observed with simultaneous lack of TAT1. Screening in patients diagnosed with congenital or age-related cataract yielded one homozygous single nucleotide deletion segregating in a family with congenital cataract. Expressed in HeLa cells, this LAT2 mutation did not support amino acid uptake. Heterozygous LAT2 variants were also found in patients with cataract some of which showed a reduced transport function when expressed in HeLa cells. Whether heterozygous LAT2 variants may contribute to the pathology of cataract needs to be further investigated. Overall, our results suggest that defects of amino acid transporter LAT2 are implicated in cataract formation, a situation that may be aggravated by TAT1 defects
    corecore