59 research outputs found

    Zoonotic pathogens and antimicrobial resistance in ‘animal-friendly’ pig production systems in Switzerland

    Get PDF
    In a cross-sectional study, the impact of ‘animal-friendly’ housing systems on the prevalence of Salmonella species, Campylobacter species, and Yersinia enterocolitica in finishing pigs and pork was investigated. Furthermore, antimicrobial resistance patterns of isolated campylobacter strains were analysed. In faecal samples of two out of 88 fattening pig farms salmonellae were isolated. All 865 samples of pork were found to be negative. Campylobacter was isolated on 98.9 % of the farms but only from 0.2 % of the pork samples. Yersiniae were found in samples of 63.3 % of the farms and in 15.4 % of pork samples. For all three bacteria, there was no statistically significant difference in the prevalence between conventional and ‘animal-friendly’ housing systems. In ‘animal-friendly’ farms, antimicrobial resistance of campylobacter isolates to fluoroquinolones and streptomycin was significantly less frequent than in conventional farms. Furthermore, fewer isolates had resistance to three or more antimicrobials in ‘animal-friendly’ farms

    A qualitative assessment of the probability of human exposure to Trichinella spp. in Switzerland

    Get PDF
    Trichinellosis is a zoonotic disease caused by Trichinella spp. Pork is a potential source of infection for humans. A qualitative assessment was conducted to assess the probability of human exposure to Trichinella spp. in Switzerland via the consumption of pork. For the assessment, both the wildlife cycle and the domestic cycle were taken into account. The probability of occurrence of Trichinella infections in domestic pigs was assessed negligible under controlled housing systems due to biosecurity measures. Free-range pigs were assessed to have a very low probability of being infected. Pork from free-range pigs that were not tested for Trichinella spp. was estimated to carry a very low probability for human exposure to Trichmella spp

    Comparing the demonstration of freedom from Trichinella infection of domestic pigs by traditional and risk-based surveillance

    Get PDF
    Traditionally, the routine artificial digestion test is applied to assess the presence of Trichinella larvae in pigs. However, this diagnostic method has a low sensitivity compared to serological tests. The results from artificial digestion tests in Switzerland were evaluated over a time period of 15 years to determine by when freedom from infection based on these data could be confirmed. Freedom was defined as a 95% probability that the prevalence of infection was below 0·0001%. Freedom was demonstrated after 12 years at the latest. A new risk-based surveillance approach was then developed based on serology. Risk-based surveillance was also assessed over 15 years, starting in 2010. It was shown that by using this design, the sample size could be reduced by at least a factor of 4 when compared with the traditional testing regimen, without lowering the level of confidence in the Trichinella-free status of the pig populatio

    Modelling the within-herd transmission of in closed pig herds.

    Get PDF
    BACKGROUND A discrete time, stochastic, compartmental model simulating the spread of within a batch of industrially raised pigs was developed to understand infection dynamics and to assess the impact of a range of husbandry practices. A 'disease severity' index was calculated based on the ratio between the cumulative numbers of acutely and chronically diseased and infectious pigs per day in each age category, divided by the length of time that pigs spent in this age category. This is equal to the number of pigs per day, either acutely or chronically infectious and diseased, divided by the number of all pigs per all days in the model. The impact of risk and protective factors at batch level was examined by adjusting 'acclimatisation of gilts', 'length of suckling period', 'vaccination of suckling pigs against ', 'contact between fattening pigs of different age during restocking of compartments' and 'co-infections in fattening pigs'. RESULTS The highest 'disease severity' was predicted, when gilts do not have contact with live animals during their acclimatisation, suckling period is 28 days, no vaccine is applied, fatteners have contact with pigs of other ages and are suffering from co-infections. Pigs in this scenario become diseased/infectious for 26.1 % of their lifetime. Logistic regression showed that vaccination of suckling pigs was influential for 'disease severity' in growers and finishers, but not in suckling and nursery pigs. Lack of contact between gilts and other live pigs during the acclimatisation significantly influenced the 'disease severity' in suckling pigs but had less impact in growing and finishing pigs. The length of the suckling period equally affected the severity of the disease in all age groups with the strongest association in nursery pigs. The contact between fatteners of different groups influenced the course of infection among finishers, but not among other pigs. Finally, presence of co-infections was relevant in growers and finishers, but not in younger pigs. CONCLUSION The developed model allows comparison of different prevention programmes and strategies for controlling transmission of

    Consanguinity and pregnancy outcomes in a multi-ethnic, metropolitan European population

    Get PDF
    Objective The aim of the present study was to assess the risk of major anomalies in the offspring of consanguineous couples, including data on the prenatal situation. Methods Over 20 years (1993–2012), 35 391 fetuses were examined by prenatal sonography. In 675 cases (1.9%), parents were consanguineous, with 307 couples (45.5%) related as first cousins, 368 couples (54.5%) beyond first cousins. Detailed information was retrieved on 31 710 (89.6%) fetuses, (consanguineous 568: 1.8%). Results Overall prevalence of major anomalies among fetuses with non-consanguineous parents was 2.9% (consanguineous, 10.9%; first cousins, 12.4%; beyond first cousins, 6.5%). Adjusting the overall numbers for cases having been referred because of a previous index case, the prevalences were 2.8% (non-consanguineous) and 6.1% (consanguineous) (first cousin, 8.5%; beyond first cousin, 3.9%). Further adjustment for differential rates of trisomic pregnancies indicated 2.0%/5.9% congenital anomalies (non-consanguineous/consanguineous groups), that is, a consanguinity-associated excess of 3.9%, 6.1% in first cousin progeny and 1.9% beyond first cousin. Conclusions The prevalence of major fetal anomalies associated with consanguinity is higher than in evaluations based only on postnatal life. It is important that this information is made available in genetic counselling programmes, especially in multi-ethnic and multi-religious communities, to enable couples to make informed decisions

    Conceptualising the technical relationship of animal disease surveillance to intervention and mitigation as a basis for economic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surveillance and intervention are resource-using activities of strategies to mitigate the unwanted effects of disease. Resources are scarce, and allocating them to disease mitigation instead of other uses necessarily involves the loss of alternative sources of benefit to people. For society to obtain the maximum benefits from using resources, the gains from disease mitigation must be compared to the resource costs, guiding decisions made with the objective of achieving the optimal net outcome.</p> <p>Discussion</p> <p>Economics provides criteria to guide decisions aimed at optimising the net benefits from the use of scarce resources. Assessing the benefits of disease mitigation is no exception. However, the technical complexity of mitigation means that economic evaluation is not straightforward because of the technical relationship of surveillance to intervention. We argue that analysis of the magnitudes and distribution of benefits and costs for any given strategy, and hence the outcome in net terms, requires that mitigation is considered in three conceptually distinct stages. In Stage I, 'sustainment', the mitigation objective is to sustain a free or acceptable status by preventing an increase of a pathogen or eliminating it when it occurs. The role of surveillance is to document that the pathogen remains below a defined threshold, giving early warning of an increase in incidence or other significant changes in risk, and enabling early response. If a pathogen is not contained, the situation needs to be assessed as Stage II, 'investigation'. Here, surveillance obtains critical epidemiological information to decide on the appropriate intervention strategy to reduce or eradicate a disease in Stage III, 'implementation'. Stage III surveillance informs the choice, timing, and scale of interventions and documents the progress of interventions directed at prevalence reduction in the population.</p> <p>Summary</p> <p>This article originates from a research project to develop a conceptual framework and practical tool for the economic evaluation of surveillance. Exploring the technical relationship between mitigation as a source of economic value and surveillance and intervention as sources of economic cost is crucial. A framework linking the key technical relationships is proposed. Three conceptually distinct stages of mitigation are identified. Avian influenza, salmonella, and foot and mouth disease are presented to illustrate the framework.</p

    Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: Review of current approaches

    Get PDF
    BACKGROUND: Emerging animal and zoonotic diseases and increasing international trade have resulted in an increased demand for veterinary surveillance systems. However, human and financial resources available to support government veterinary services are becoming more and more limited in many countries world-wide. Intuitively, issues that present higher risks merit higher priority for surveillance resources as investments will yield higher benefit-cost ratios. The rapid rate of acceptance of this core concept of risk-based surveillance has outpaced the development of its theoretical and practical bases. DISCUSSION: The principal objectives of risk-based veterinary surveillance are to identify surveillance needs to protect the health of livestock and consumers, to set priorities, and to allocate resources effectively and efficiently. An important goal is to achieve a higher benefit-cost ratio with existing or reduced resources. We propose to define risk-based surveillance systems as those that apply risk assessment methods in different steps of traditional surveillance design for early detection and management of diseases or hazards. In risk-based designs, public health, economic and trade consequences of diseases play an important role in selection of diseases or hazards. Furthermore, certain strata of the population of interest have a higher probability to be sampled for detection of diseases or hazards. Evaluation of risk-based surveillance systems shall prove that the efficacy of risk-based systems is equal or higher than traditional systems; however, the efficiency (benefit-cost ratio) shall be higher in risk-based surveillance systems. SUMMARY: Risk-based surveillance considerations are useful to support both strategic and operational decision making. This article highlights applications of risk-based surveillance systems in the veterinary field including food safety. Examples are provided for risk-based hazard selection, risk-based selection of sampling strata as well as sample size calculation based on risk considerations
    corecore