10 research outputs found

    Vascular endothelial growth factor and KIT expression in relation with microvascular density and tumor grade in supratentorial astrocytic tumors

    Get PDF
    PURPOSE: To evaluate the relationship between microvascular density and the expression of vascular endothelial growth factor (VEGF) and KIT as possible markers of angiogenic stimulus in astrocytic tumors and correlate it with histopathological grading. METHODS: We enrolled 99 surgical specimens of supratentorial astrocytic tumors for analysis of VEGF and KIT and subsequent correlation with MVD and grading. RESULTS: KIT and VEGF expression correlated with microvascular density (p<0.005) and both VEGF and microvascular density correlated with grading (p<0.005). KIT had no significant relationship with grading (p=0.657). CONCLUSION: KIT and VEGF constitute important pathways in the angiogenesis of astrocytomas and therefore are promising prognostic tools and options for therapeutic intervention

    EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines

    Get PDF
    Purpose: The epidermal growth factor receptor (EGFR) is amplified and overexpressed in adult glioblastoma, with response to targeted inhibition dependent on the underlying biology of the disease. EGFR has thus far been considered to play a less important role in pediatric glioma, although extensive data are lacking. We have sought to clarify the role of EGFR in pediatric high-grade glioma (HGG). Experimental Design: We retrospectively studied a total of 90 archival pediatric HGG specimens for EGFR protein overexpression, gene amplification, and mutation and assessed the in vitro sensitivity of pediatric glioma cell line models to the small-molecule EGFR inhibitor erlotinib. Results: Amplification was detected in 11% of cases, with corresponding overexpression of the receptor. No kinase or extracellular domain mutations were observed; however, 6 of 35 (17%) cases harbored the EGFRvIII deletion, including two anaplastic oligodendrogliomas and a gliosarcoma overexpressing EGFRvIII in the absence of gene amplification and coexpressing platelet-derived growth factor receptor α. Pediatric glioblastoma cells transduced with wild-type or deletion mutant EGFRvIII were not rendered more sensitive to erlotinib despite expressing wild-type PTEN. Phosphorylated receptor tyrosine kinase profiling showed a specific activation of platelet-derived growth factor receptor α/β in EGFRvIII-transduced pediatric glioblastoma cells, and targeted coinhibition with erlotinib and imatinib leads to enhanced efficacy in this model. Conclusions: These data identify an elevated frequency of EGFR gene amplification and EGFRvIII mutation in pediatric HGG than previously recognized and show the likely necessity of targeting multiple genetic alterations in the tumors of these children.Cancer Research UK grants C1178/A10294, C309/A2187, and C309/A8274; Oak Foundation (L. Marshall); La Fondation de France (N. Gaspar); and Breakthrough Breast Cancer (J.S. Reis-Filho). We acknowledge NHS funding to the National Institute for Health Research Biomedical Research Centre

    Microsatellite Instability in Pediatric High Grade Glioma Is Associated with Genomic Profile and Differential Target Gene Inactivation

    Get PDF
    High grade gliomas (HGG) are one of the leading causes of cancer-related deaths in children, and there is increasing evidence that pediatric HGG may harbor distinct molecular characteristics compared to adult tumors. We have sought to clarify the role of microsatellite instability (MSI) in pediatric versus adult HGG. MSI status was determined in 144 patients (71 pediatric and 73 adults) using a well established panel of five quasimonomorphic mononucleotide repeat markers. Expression of MLH1, MSH2, MSH6 and PMS2 was determined by immunohistochemistry, MLH1 was assessed for mutations by direct sequencing and promoter methylation using MS-PCR. DNA copy number profiles were derived using array CGH, and mutations in eighteen MSI target genes studied by multiplex PCR and genotyping. MSI was found in 14/71 (19.7%) pediatric cases, significantly more than observed in adults (5/73, 6.8%; p = 0.02, Chi-square test). MLH1 expression was downregulated in 10/13 cases, however no mutations or promoter methylation were found. MSH6 was absent in one pediatric MSI-High tumor, consistent with an inherited mismatch repair deficiency associated with germline MSH6 mutation. MSI was classed as Type A, and associated with a remarkably stable genomic profile. Of the eighteen classic MSI target genes, we identified mutations only in MSH6 and DNAPKcs and described a polymorphism in MRE11 without apparent functional consequences in DNA double strand break detection and repair. This study thus provides evidence for a potential novel molecular pathway in a proportion of gliomas associated with the presence of MSI

    Grade I meningiomas with atypical characteristics: a worse prognosis

    No full text
    ABSTRACT The study reviewed the histology of cases of grade I meningiomas with spontaneous necrosis, grade I without necrosis and grade II meningiomas, to evaluate the histological and immunohistochemical factors of the patients’ prognosis, while correlating the clinicopathological features with the clinical follow-up of the patients. A review of 47 cases from the Department of Pathology of UNIFESP was performed and the samples were submitted to immunohistochemical examination with the p53 protein, Ki-67 cell proliferation factor and progesterone receptor markers. A greater expression was found in the progression of several degrees of aggressiveness for p53 and Ki-67, and a higher frequency of progesterone receptors in the lower degrees. The group of grade I meningiomas with spontaneous necrosis showed histological and immunohistochemical indexes that approximate those of the grade II meningioma. This suggests a worse prognosis for grade I meningiomas with necrosis
    corecore