303 research outputs found

    The Diamagnetism of Nitrobenzene at Different Temperatures.

    Get PDF
    This paper discuss the Diamagnetism of Nitrobenzene at Different Temperatures.@IAC

    Effect of Additives on Liner Properties of Case-bonded Composite Propellants

    Get PDF
    A thin layer of liner is applied to ensure a good bond between the insulator and the propellant in case-bonded rocket motors. It also acts as a protective shield for the insulatorby providing a limited fire protection effect. Liner compositions should preferably be based on the same binder system used in the propellant formulations. As the liner has to hold the propellant and the insulator without debond under all the environmental conditions, it plays a key role in predicted performance of a rocket motor. Hence, studies were carried out to improve the liner properties using various hydroxyl compounds, such as butanediol, cardanol, trimethylol propane, pyrogallol, etc as additives. Butanediol and phloroglucinol combination gave the best results in terms of mechanical properties and interface properties for the liner compositions. The effect of filler content on the liner properties was also studied. The results showed that higher filler content does not affect interface properties. Considering the fire retardancy effect and reinforcement of antimony trioxide (S£203), the formulation containing higher Sb2O3 was selected. The studies on pot life/castable life of liner showed that propellant could be cast up to 6 days after liner coating, without adversely affecting the bonding and the bond strength

    Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    Get PDF
    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection, indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket

    Inter-digital capacitive sensor for evaluating cable jacket and insulation aging

    Get PDF
    An inter-digital capacitive (TDC) sensor has previously been used to measure dielectric properties of cable insulation polymer material when placed in direct contact with the insulation. Often cable insulation is covered by a polymer jacket. The dielectric properties of many cable jacket and insulation polymers are known to change due to thermal and radiation exposure-related damage. These dielectric properties frequently track with other measures of cable aging, such as tensile elongation-at-break and indenter modulus that have been broadly established as cable insulation polymer assessment methods. The external jacket of a cable is likely to have a different permittivity from the underlying insulation, and frequently the jacket material exhibits more severe damage than the insulation material due to environmental exposure. Because the jacket serves primarily to guard the cable during installation, as long as the underlying insulation condition is acceptable, the jacket condition is relatively unimportant in service. As part of a continuing program to develop and evaluate nondestructive examination methods that may be applied to cable condition assessment, a set of tools has been developed including (1) a parallel-plate sensor to directly measure the permittivity spectrum of flat sheet material and (2) an TDC and fixture to measure the effect of cable polymer dielectric property change on the sensor response. The TDC consists of two fork-like electrodes facing each other with the fork tines interspersed and separated by a small gap. The electrodes are printed on one side of a flexible substrate that can be conformed to the surface of a cylindrical cable, with tines parallel to the cable axis. The electrodes are connected to a broad-frequency-spectral impedance meter that senses the capacitance between the narrowly gapped electrode tines. This capacitance is known to vary as a function of the permittivity of any material in close proximity to the electrodes. By finite element modeling (FEM) and experimentation, this study investigates the effect of tine spacing and other design parameters associated with the TDC on the voltage (potential) distribution and electric field depth of penetration. The TDC measurement of an unshielded ethylene-propylene rubber (EPR)-insulated cable is shown to track with the degree of aging and quantities obtained by established methods. For jacketed cable systems, the TDC response is dominated by the jacket but, by analyzing measurements from TDC sensors with different depths-of-field penetration into the cable under test, the influence of the chlorinated polyethylene (CPE) cable jacket material degradation can be separated from an assessment of the cable insulation thereby enabling assessment of the insulation beneath/through the jacket

    Assessment of knowledge, practice and perception of menstruation among adult women in the reproductive age group, in Mangalore, India

    Get PDF
    Background: Women often lack knowledge regarding reproductive health including menstruation which can be due to socio-cultural barriers in which they grow up. The present study is aimed at assessing the level of knowledge regarding menstruation and hygienic practices and perceptions during menstruation.Methods: It was a cross sectional study, conducted among 110 adult women to assess their knowledge regarding menstruation, practices followed during menstruation and their perceptionof menstruation. The collected data was analyzed using SPSS version 17. 0. Chi square test was applied. P<0.05 was considered to be significant.Results: Only 52% of the study population has satisfactory knowledge regarding menstruation. Women between 15 to 20 years of age and those from the middle and higher socio-economic groups seem to possess maximum knowledge regarding menstruation. Women of the higher socio-economic group practice better sanitary measures during menstruation with 100% of them using pads, as compared to women of lower socio economic group who showed a trend of using cloth (87.5%). Women of the upper socio-economic class (42.78%) had better perception towards menstruation (p<0.05).Conclusions: It is very important that lower socio-economic group should be educated about the importance of maintaining hygiene during menstruation by proper health education and equip them with skills regarding safe and hygienic practices to prevent the risk for reproductive tract infections

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    TAp73 is a central transcriptional regulator of airway multiciliogenesis.

    Get PDF
    Motile multiciliated cells (MCCs) have critical roles in respiratory health and disease and are essential for cleaning inhaled pollutants and pathogens from airways. Despite their significance for human disease, the transcriptional control that governs multiciliogenesis remains poorly understood. Here we identify TP73, a p53 homolog, as governing the program for airway multiciliogenesis. Mice with TP73 deficiency suffer from chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance. Organotypic airway cultures pinpoint TAp73 as necessary and sufficient for basal body docking, axonemal extension, and motility during the differentiation of MCC progenitors. Mechanistically, cross-species genomic analyses and complete ciliary rescue of knockout MCCs identify TAp73 as the conserved central transcriptional integrator of multiciliogenesis. TAp73 directly activates the key regulators FoxJ1, Rfx2, Rfx3, and miR34bc plus nearly 50 structural and functional ciliary genes, some of which are associated with human ciliopathies. Our results position TAp73 as a novel central regulator of MCC differentiation

    The Complete Nucleotide Sequences of the 5 Genetically Distinct Plastid Genomes of Oenothera, Subsection Oenothera: II. A Microevolutionary View Using Bioinformatics and Formal Genetic Data

    Get PDF
    A unique combination of genetic features and a rich stock of information make the flowering plant genus Oenothera an appealing model to explore the molecular basis of speciation processes including nucleus–organelle coevolution. From representative species, we have recently reported complete nucleotide sequences of the 5 basic and genetically distinguishable plastid chromosomes of subsection Oenothera (I–V). In nature, Oenothera plastid genomes are associated with 6 distinct, either homozygous or heterozygous, diploid nuclear genotypes of the 3 basic genomes A, B, or C. Artificially produced plastome–genome combinations that do not occur naturally often display interspecific plastome–genome incompatibility (PGI). In this study, we compare formal genetic data available from all 30 plastome–genome combinations with sequence differences between the plastomes to uncover potential determinants for interspecific PGI. Consistent with an active role in speciation, a remarkable number of genes have high Ka/Ks ratios. Different from the Solanacean cybrid model Atropa/tobacco, RNA editing seems not to be relevant for PGIs in Oenothera. However, predominantly sequence polymorphisms in intergenic segments are proposed as possible sources for PGI. A single locus, the bidirectional promoter region between psbB and clpP, is suggested to contribute to compartmental PGI in the interspecific AB hybrid containing plastome I (AB-I), consistent with its perturbed photosystem II activity

    Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation

    Get PDF
    This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten?carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation
    corecore