12 research outputs found

    Artificial Neural Network Modeling and Genetic Algorithm Multiobjective Optimization of Process of Drying-Assisted Walnut Breaking

    No full text
    This study combined an artificial neural network (ANN) with a genetic algorithm (GA) to obtain the model and optimal process parameters of drying-assisted walnut breaking. Walnuts were dried at different IR temperatures (40 °C, 45 °C, 50 °C, and 55 °C) and air velocities (1, 2, 3, and 4 m/s) to different moisture contents (10%, 15%, 20%, and 25%) by using air-impingement technology. Subsequently, the dried walnuts were broken in different loading directions (sutural, longitudinal, and vertical). The drying time (DT), specific energy consumption (SEC), high kernel rate (HR), whole kernel rate (WR), and shell-breaking rate (SR) were determined as response variables. An ANN optimized by a GA was applied to simulate the influence of IR temperature, air velocity, moisture content, and loading direction on the five response variables, from which the objective functions of DT, SEC, HR, WR, and SR were developed. A GA was applied for the simultaneous maximization of HR, WR, and SR and minimization of DT and SEC to determine the optimized process parameters. The ANN model had a satisfactory prediction ability, with the coefficients of determination of 0.996, 0.998, 0.990, 0.991, and 0.993 for DT, SEC, HR, WR, and SR, respectively. The optimized process parameters were found to be 54.9 °C of IR temperature, 3.66 m/s of air velocity, 10.9% of moisture content, and vertical loading direction. The model combining an ANN and a GA was proven to be an effective method for predicting and optimizing the process parameters of walnut breaking. The predicted values under optimized process parameters fitted the experimental data well, with a low relative error value of 2.51–3.96%. This study can help improve the quality of walnut breaking, processing efficiency, and energy conservation. The ANN modeling and GA multiobjective optimization method developed in this study provide references for the process optimization of walnut and other similar commodities

    Drying quality and energy consumption efficient improvements in hot air drying of papaya slices by step-down relative humidity based on heat and mass transfer characteristics and 3D simulation

    No full text
    Convective hot air drying technology is widely used for fruits and vegetables drying process due to its simplicity in usage, small investment, and convenience in operation. However, it is generally considered energy-intensive process with lower drying efficiency and quality because of unprecise control of drying process. In order to solve these problems, step-down relative humidity (RH) hot air drying technology was applied for papaya drying to improve drying efficiency and quality and reduce energy consumption. The effect of constant RH (20%, 30%, 40%, and 50%) and step-down RH of 50% with different holding times (10, 30, 60, and 90 min) and then decrease to 20% on heat and mass transfer process, drying quality, and energy consumption was examined. Results showed that decreasing RH contributed to improvement in the drying rate (DR). Compared to constant RH of 20%, the drying time under initial RH of 50% for 30 min followed by 20% RH shortened by 21.4%. Additionally, under this RH control strategy, the rehydration ratio (RR) and energy consumption achieved their maximum (7.71 ± 0.06) and minimum value (0.015 ± 0.001 kJ/g), respectively. During initial drying stage, high RH improved convective heat transfer coefficient (ht) values and material temperature increased quickly. Furthermore, high RH contributed to maintaining pore structure formation, which benefited moisture diffusion. When RH was reduced, low RH enhanced convective mass transfer coefficient (hm) significantly, resulting in rapid diffusion of internal moisture at high temperature, as well as rapid moisture evaporation from the surface. Therefore, step-down RH hot air drying was verified to improve drying of papaya slices, making it energy efficient process. The findings in current work indicate step-down relative humidity strategy is a promising technique to enhance hot air drying process, quality, and energy efficiency of papaya slices

    Vacuum-steam pulsed blanching (VSPB) softens texture and enhances drying rate of carrot by altering cellular structure, pectin polysaccharides and water state

    No full text
    As a new type of blanching technology, vacuum-steam pulsed blanching (VSPB) has higher blanching efficiency and quality, but the mechanism of this technology on texture softening and drying enhancement is still unclear. In this study, the mechanism was revealed from texture, pectin, nanostructure, cell ultrastructure, calcium, and water state. Results revealed that VSPB treatment reduced the hardness and chewiness, increased water-soluble pectin, decreased sodium‑carbonate-soluble and chelate-soluble pectin concentration, and resulted in depolymerization and degradation of pectin nanostructure. However, transmission electron microscopy showed that blanching damaged the cell wall structure and the integrity of the middle layer. Scanning electron microscope - Energy dispersive X-ray spectroscopy measurement observations indicated that lipid droplets containing calcium ions were formed under the action of VSPB. In addition, low field nuclear magnetic resonance showed that the redistribution of moisture in carrot was facilitated by VSPB. The findings reveal the mechanism of texture softening and drying rate enhancement driven by blanching. Industrial relevance: Thermal blanching is an essential thermal treatment for many fruits and vegetables processing. Hot water blanching and steam blanching are the two most frequently employed blanching methods due to simple to establish and easy to operate. However, hot water and steam blanching holds several disadvantages, e.g., hot water blanching requires a huge amount of water and generates an excessive amount of wastewater, particularly loss of water-soluble nutrients during blanching due to leaching and diffusion, while for steam blanching, the existence of air and water vapor among the piled materials leads to low blanching efficiency and un-uniform heating. VSPB is an innovative steam blanching method. In the VBSP process, the air and water vapor are expelled by the vacuum pump to facilitate steam deep penetration in the materials, particularly the piled materials, so as to improve blanching efficiency and uniformity. Previous study indicated VSPB could soften texture and reduce the drying time of carrot, but the mechanism was not clear. The current work reveal that VSPB softens texture and enhances drying rate of carrot via micro-, ultra-structure modification, pectin polysaccharides degradation and changes of water state. The findings have important implications for understanding and controlling the blanching triggered texture formation and drying enhancement.</p

    Pulsed Vacuum Drying of Persimmon Slices: Drying Kinetics, Physicochemical Properties, Microstructure and Antioxidant Capacity

    No full text
    In order to explore an alternative drying method to enhance the drying process and quality of persimmon slices, pulsed vacuum drying (PVD) was employed and the effects of different drying temperatures (60, 65, 70, and 75 °C) on drying kinetics, color, rehydration ratio (RR), microstructure, bioactive compounds, and the antioxidant capacity of sliced persimmons were investigated in the current work. Results showed that the rehydration ratio (RR) of the samples under PVD was significantly higher than that of the traditional hot air-dried ones. Compared to the fresh samples, the dried persimmon slices indicated a decrease in the bioactive compounds and antioxidant capacity. The total phenolic content (TPC) of PVD samples at 70 °C was 87.96% higher than that of the hot air-dried persimmon slices at 65 °C. Interestingly, at 70 °C, the soluble tannin content and TPC of the PVD samples reached the maximum values of 6.09 and 6.97 mg GAE/g, respectively. The findings in the current work indicate that PVD is a promising drying method for persimmon slices as it not only enhances the drying process but also the quality attributes

    Guidelines on reporting treatment conditions for emerging technologies in food processing

    No full text
    In the last decades, different non-thermal and thermal technologies have been developed for food processing. However, in many cases, it is not clear which experimental parameters must be reported to guarantee the experiments’ reproducibility and provide the food industry a straightforward way to scale-up these technologies. Since reproducibility is one of the most important science features, the current work aims to improve the reproducibility of studies on emerging technologies for food processing by providing guidelines on reporting treatment conditions of thermal and non-thermal technologies. Infrared heating, microwave heating, ohmic heating and radiofrequency heating are addressed as advanced thermal technologies and isostatic high pressure, ultra-high-pressure homogenization sterilization, high-pressure homogenization, microfluidization, irradiation, plasma technologies, power ultrasound, pressure change technology, pulsed electric fields, pulsed light and supercritical CO2 are approached as non-thermal technologies. Finally, growing points and perspectives are highlighted
    corecore