16 research outputs found

    Trichoderma species as Biocontrol Agent against Soil Borne Fungal Pathogens

    Get PDF
    Soil borne pathogenic fungi are of major concern in agriculture which significantly decreases the plant yield. Chemically controlled plant imposes environmental threats potentially dangerous to humans as well as other animals. Thus, application of biological methods in plant disease control is more effective alternative technique. This study was carried out to isolate Trichoderma species from soil sample and to assess its in vitro biocontrol efficacy against fungal pathogens viz. Sclerotium rolfsii, Sclerotionia sclerotiorum, Fusarium solani and Rhizoctonia solani. Biocontrol efficacy testing of isolates against different fungal pathogens was performed by dual culture technique.In this study, 5 different Trichoderma species were isolated from 26 various soil samples and were tested against four fungal soil-borne pathogens. Inhibition percentage of radial growth of Sclerotium rolfsii by three of the Trichoderma isolates was found to be 100%; about 62% and 68% of maximum inhibition was observed against Rhizoctonia solani and Fusarium solani respectively whereas Sclerotionia sclerotiorum was inhibited maximum up to 23%. This in vitro study revealed that although Trichoderma species plays an important role in controlling all type of soil borne fungal plant pathogens, however, isolates as biocontrol agent against Sclerotium rolfsii was found to be more efficient in comparison to other pathogens.Nepal Journal of Biotechnology. Dec. 2017 Vol. 5, No. 1: 39-4

    Exploring differentially expressed genes of Staphylococcus aureus exposed to human tonsillar cells using RNA sequencing

    Get PDF
    Background - The nose and the throat are the most predominant colonizing sites of Staphylococcus aureus, and colonization is a risk factor for infection. Nasal colonization is well described; however, we have limited knowledge about S. aureus throat colonization. The main objective of this study was to explore differentially expressed genes (DEGs) in S. aureus throat isolate TR145 exposed to human tonsil epithelial cells (HTEpiC) by using RNA sequencing (RNA-seq) and pathway analysis. DEGs in S. aureus at 1 or 3 hours (h) interaction with its host were explored. Results - S. aureus was co-cultured in absence and presence of tonsillar cells at 1 or 3 h. Over the 3 h time frame, the bacteria multiplied, but still caused only minor cytotoxicity. Upon exposure to tonsillar cell line, S. aureus changed its transcriptomic profile. A total of 508 DEGs were identified including unique (1 h, 160 DEGs and 3 h, 78 DEGs) and commonly shared genes (1 and 3 h, 270 DEGs). Among the DEGs, were genes encoding proteins involved in adhesion and immune evasion, as well as iron acquisition and transport. Reverse transcription qPCR was done on selected genes, and the results correlated with the RNA-seq data. Conclusion - We have shown the suitability of using HTEpiC as an in vitro model for investigating key determinants in S. aureus during co-incubation with host cells. Several DEGs were unique after 1 or 3 h exposure to host cells, while others were commonly expressed at both time points. As their expression is induced upon meeting with the host, they might be explored further for future targets for intervention to prevent either colonization or infection in the throat

    Co-culturing with Streptococcus anginosus alters Staphylococcus aureus transcriptome when exposed to tonsillar cells

    Get PDF
    IntroductionImproved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus anginosus, to identify genes in S. aureus that are important for colonization in the presence of human tonsillar epithelial cells and S. anginosus, and further compare this transcriptome with the genes expressed in S. aureus as only bacterium.MethodsWe performed an in vitro co-culture experiment followed by RNA sequencing to identify interaction-induced transcriptional alterations and differentially expressed genes (DEGs), followed by gene enrichment analysis.Results and discussionA total of 332 and 279 significantly differentially expressed genes with p-value < 0.05 and log2 FoldChange (log2FC) ≥ |2| were identified in S. aureus after 1 h and 3 h co-culturing, respectively. Alterations in expression of various S. aureus survival factors were observed when co-cultured with S. anginosus and tonsillar cells. The serine-aspartate repeat-containing protein D (sdrD) involved in adhesion, was for example highly upregulated in S. aureus during co-culturing with S. anginosus compared to S. aureus grown in the absence of S. anginosus, especially at 3 h. Several virulence genes encoding secreted proteins were also highly upregulated only when S. aureus was co-cultured with S. anginosus and tonsillar cells, and iron does not appear to be a limiting factor in this environment. These findings may be useful for the development of interventions against S. aureus throat colonization and could be further investigated to decipher the roles of the identified genes in the host immune response in context of a throat commensal landscape

    Prevalence of tick-borne encephalitis virus in questing Ixodes ricinus nymphs in southern Scandinavia and the possible influence of meteorological factors

    Get PDF
    Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the oresund-Kattegat-Skagerrak (oKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skane region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia

    Co-culturing with Streptococcus anginosus alters Staphylococcus aureus transcriptome when exposed to tonsillar cells

    No full text
    Introduction Improved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus anginosus, to identify genes in S. aureus that are important for colonization in the presence of human tonsillar epithelial cells and S. anginosus, and further compare this transcriptome with the genes expressed in S. aureus as only bacterium. Methods We performed an in vitro co-culture experiment followed by RNA sequencing to identify interaction-induced transcriptional alterations and differentially expressed genes (DEGs), followed by gene enrichment analysis. Results and discussion A total of 332 and 279 significantly differentially expressed genes with p-value = |2| were identified in S. aureus after 1 h and 3 h co-culturing, respectively. Alterations in expression of various S. aureus survival factors were observed when co-cultured with S. anginosus and tonsillar cells. The serine-aspartate repeat-containing protein D (sdrD) involved in adhesion, was for example highly upregulated in S. aureus during co-culturing with S. anginosus compared to S. aureus grown in the absence of S. anginosus, especially at 3 h. Several virulence genes encoding secreted proteins were also highly upregulated only when S. aureus was co-cultured with S. anginosus and tonsillar cells, and iron does not appear to be a limiting factor in this environment. These findings may be useful for the development of interventions against S. aureus throat colonization and could be further investigated to decipher the roles of the identified genes in the host immune response in context of a throat commensal landscape.Peer reviewe

    Table_1_Co-culturing with Streptococcus anginosus alters Staphylococcus aureus transcriptome when exposed to tonsillar cells.xlsx

    No full text
    IntroductionImproved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus anginosus, to identify genes in S. aureus that are important for colonization in the presence of human tonsillar epithelial cells and S. anginosus, and further compare this transcriptome with the genes expressed in S. aureus as only bacterium.MethodsWe performed an in vitro co-culture experiment followed by RNA sequencing to identify interaction-induced transcriptional alterations and differentially expressed genes (DEGs), followed by gene enrichment analysis.Results and discussionA total of 332 and 279 significantly differentially expressed genes with p-value 2 FoldChange (log2FC) ≥ |2| were identified in S. aureus after 1 h and 3 h co-culturing, respectively. Alterations in expression of various S. aureus survival factors were observed when co-cultured with S. anginosus and tonsillar cells. The serine-aspartate repeat-containing protein D (sdrD) involved in adhesion, was for example highly upregulated in S. aureus during co-culturing with S. anginosus compared to S. aureus grown in the absence of S. anginosus, especially at 3 h. Several virulence genes encoding secreted proteins were also highly upregulated only when S. aureus was co-cultured with S. anginosus and tonsillar cells, and iron does not appear to be a limiting factor in this environment. These findings may be useful for the development of interventions against S. aureus throat colonization and could be further investigated to decipher the roles of the identified genes in the host immune response in context of a throat commensal landscape.</p

    Table_2_Co-culturing with Streptococcus anginosus alters Staphylococcus aureus transcriptome when exposed to tonsillar cells.xlsx

    No full text
    IntroductionImproved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus anginosus, to identify genes in S. aureus that are important for colonization in the presence of human tonsillar epithelial cells and S. anginosus, and further compare this transcriptome with the genes expressed in S. aureus as only bacterium.MethodsWe performed an in vitro co-culture experiment followed by RNA sequencing to identify interaction-induced transcriptional alterations and differentially expressed genes (DEGs), followed by gene enrichment analysis.Results and discussionA total of 332 and 279 significantly differentially expressed genes with p-value 2 FoldChange (log2FC) ≥ |2| were identified in S. aureus after 1 h and 3 h co-culturing, respectively. Alterations in expression of various S. aureus survival factors were observed when co-cultured with S. anginosus and tonsillar cells. The serine-aspartate repeat-containing protein D (sdrD) involved in adhesion, was for example highly upregulated in S. aureus during co-culturing with S. anginosus compared to S. aureus grown in the absence of S. anginosus, especially at 3 h. Several virulence genes encoding secreted proteins were also highly upregulated only when S. aureus was co-cultured with S. anginosus and tonsillar cells, and iron does not appear to be a limiting factor in this environment. These findings may be useful for the development of interventions against S. aureus throat colonization and could be further investigated to decipher the roles of the identified genes in the host immune response in context of a throat commensal landscape.</p

    DataSheet_1_Co-culturing with Streptococcus anginosus alters Staphylococcus aureus transcriptome when exposed to tonsillar cells.pdf

    No full text
    IntroductionImproved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus anginosus, to identify genes in S. aureus that are important for colonization in the presence of human tonsillar epithelial cells and S. anginosus, and further compare this transcriptome with the genes expressed in S. aureus as only bacterium.MethodsWe performed an in vitro co-culture experiment followed by RNA sequencing to identify interaction-induced transcriptional alterations and differentially expressed genes (DEGs), followed by gene enrichment analysis.Results and discussionA total of 332 and 279 significantly differentially expressed genes with p-value 2 FoldChange (log2FC) ≥ |2| were identified in S. aureus after 1 h and 3 h co-culturing, respectively. Alterations in expression of various S. aureus survival factors were observed when co-cultured with S. anginosus and tonsillar cells. The serine-aspartate repeat-containing protein D (sdrD) involved in adhesion, was for example highly upregulated in S. aureus during co-culturing with S. anginosus compared to S. aureus grown in the absence of S. anginosus, especially at 3 h. Several virulence genes encoding secreted proteins were also highly upregulated only when S. aureus was co-cultured with S. anginosus and tonsillar cells, and iron does not appear to be a limiting factor in this environment. These findings may be useful for the development of interventions against S. aureus throat colonization and could be further investigated to decipher the roles of the identified genes in the host immune response in context of a throat commensal landscape.</p
    corecore