42 research outputs found

    Expression of ApoE in the mouse olfactory system during development and post injury

    Get PDF
    U ovom će se završnom radu obraditi materijali i postupci brušenja drva prije lakiranja, te materijali i postupci brušenja laka tijekom površinske obrade drva. Obrazložit će se i metode ispitivanja kvalitete brušenja

    The distribution of apolipoprotein E in mouse olfactory epithelium

    Get PDF
    Previous studies from our laboratory suggest that apolipoprotein (apoE), a lipid transporting protein, facilitates olfactory nerve regeneration. We have shown that apoE is enriched in the olfactory nerve and around the glomeruli of the olfactory bulb (OB). The studies reported herein were undertaken to identify possible sources of apoE in the olfactory epithelium (OE). Immunoblotting results revealed apoE expression in the OE of wild-type (WT) mice, but not in apoE deficient/knockout (KO) mice. Immunohistochemical studies revealed that the perikarya and processes of sustentacular (Sus) cells expressed apoE-like immunoreactivity. Minimal neuronal apoE immunostaining was seen, although apoE was observed in the interstial spaces between olfactory receptor neurons (ORN). Substantial apoE-like immunoreactivity was localized to the endfeet and terminal process of Sus cells surrounding the basal cells. Double labeling immunocytochemical studies confirmed that the cell bodies and endfeet of Sus cells expressed high levels of apoE. The endothelial cells of blood vessels were intensely stained for apoE in the lamina propria. Cells forming Bowman’s gland also immunostained for apoE. The apoE staining in the nerve fascicles was less intense, but was uniformly distributed throughout the core of the nerve bundles. Heavily stained cells, probably ensheathing glia, surrounded the nerve fascicles. These results revealed that apoE is expressed in the adult OE and lamina propria at strategic locations where it could facilitate the differentiation, maturation and axonal growth of the ORN, perhaps by recycling lipids from degenerating ORN for use by growing axons

    Antitumor Activity of 2,9-Di-\u3cem\u3eSec\u3c/em\u3e-Butyl-1,10-Phenanthroline

    Get PDF
    The anti-tumor effect of a chelating phen-based ligand 2,9-di-sec-butyl-1,10-phenanthroline (dsBPT) and its combination with cisplatin were examined in both lung and head and neck cancer cell lines and xenograft animal models in this study. The effects of this agent on cell cycle and apoptosis were investigated. Protein markers relevant to these mechanisms were also assessed. We found that the inhibitory effect of dsBPT on lung and head and neck cancer cell growth (IC50 ranged between 0.1–0.2 μM) was 10 times greater than that on normal epithelial cells. dsBPT alone induced autophagy, G1 cell cycle arrest, and apoptosis. Our in vivo studies indicated that dsBPT inhibited tumor growth in a dose-dependent manner in a head and neck cancer xenograft mouse model. The combination of dsBPT with cisplatin synergistically inhibited cancer cell growth with a combination index of 0.3. Moreover, the combination significantly reduced tumor volume as compared with the untreated control (p = 0.0017) in a head and neck cancer xenograft model. No organ related toxicities were observed in treated animals. Our data suggest that dsBPT is a novel and potent antitumor drug that warrants further preclinical and clinical development either as a single agent or in combination with known chemotherapy drugs such as cisplatin

    Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth

    Get PDF
    Systemic delivery of siRNA to solid tumors remains challenging. In this study, we investigated the systemic delivery of a siRNA nanoparticle targeting ribonucleotide reductase subunit M2 (RRM2), and evaluated its intratumoral kinetics, efficacy and mechanism of action. Knockdown of RRM2 by an RNAi mechanism strongly inhibited cell growth in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. In a mouse xenograft model of HNSCC, a single intravenous injection led to the accumulation of intact nanoparticles in the tumor that disassembled over a period of at least 3 days, leading to target gene knockdown lasting at least 10 days. A four-dose schedule of siRNA nanoparticle delivering RRM2 siRNA targeted to HNSCC tumors significantly reduced tumor progression by suppressing cell proliferation and inducing apoptosis. These results show promise for the use of RRM2 siRNA-based therapy for HNSCC and possibly NSCLC

    Prognostic biomarkers in patients with human immunodeficiency virusâ positive disease with head and neck squamous cell carcinoma

    Full text link
    BackgroundWe examined the prognostic value of a panel of biomarkers in patients with squamous cell carcinoma of the head and neck (SCCHN) who were human immunodeficiency virus (HIV) positive (HIVâ positive head and neck cancer) and HIV negative (HIVâ negative head and neck cancer).MethodsTissue microarrays (TMAs) were constructed using tumors from 41 disease siteâ matched and ageâ matched HIVâ positive head and neck cancer cases and 44 HIVâ negative head and neck cancer controls. Expression of tumor biomarkers was assessed by immunohistochemistry (IHC) and correlations examined with clinical variables.ResultsExpression levels of the studied oncogenic and inflammatory tumor biomarkers were not differentially regulated by HIV status. Among patients with HIVâ positive head and neck cancer, laryngeal disease site (P = .003) and Clavienâ Dindo classification IV (CD4) counts <200 cells/μL (P = .01) were associated with poor prognosis. Multivariate analysis showed that p16 positivity was associated with improved overall survival (OS; P < .001) whereas increased expression of transforming growth factorâ beta (TGFâ β) was associated with poor clinical outcome (P = .001).ConclusionDisease site has significant effect on the expression of biomarkers. Expression of tumor TGFâ β could be a valuable addition to the conventional risk stratification equation for improving head and neck cancer disease management strategies.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139994/1/hed24911.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139994/2/hed24911_am.pd

    The distribution of apolipoprotein E in mouse olfactory epithelium

    No full text
    Previous studies from our laboratory suggest that apolipoprotein (apoE), a lipid transporting protein, facilitates olfactory nerve regeneration. We have shown that apoE is enriched in the olfactory nerve and around the glomeruli of the olfactory bulb (OB). The studies reported herein were undertaken to identify possible sources of apoE in the olfactory epithelium (OE). Immunoblotting results revealed apoE expression in the OE of wild-type (WT) mice, but not in apoE deficient/knockout (KO) mice. Immunohistochemical studies revealed that the perikarya and processes of sustentacular (Sus) cells expressed apoE-like immunoreactivity. Minimal neuronal apoE immunostaining was seen, although apoE was observed in the interstial spaces between olfactory receptor neurons (ORN). Substantial apoE-like immunoreactivity was localized to the endfeet and terminal process of Sus cells surrounding the basal cells. Double labeling immunocytochemical studies confirmed that the cell bodies and endfeet of Sus cells expressed high levels of apoE. The endothelial cells of blood vessels were intensely stained for apoE in the lamina propria. Cells forming Bowman’s gland also immunostained for apoE. The apoE staining in the nerve fascicles was less intense, but was uniformly distributed throughout the core of the nerve bundles. Heavily stained cells, probably ensheathing glia, surrounded the nerve fascicles. These results revealed that apoE is expressed in the adult OE and lamina propria at strategic locations where it could facilitate the differentiation, maturation and axonal growth of the ORN, perhaps by recycling lipids from degenerating ORN for use by growing axons

    Luteolin nanoparticle in chemoprevention – \u3cem\u3ein vitro\u3c/em\u3e and \u3cem\u3ein vivo\u3c/em\u3e anticancer activity

    No full text
    Cancer prevention (chemoprevention) by using naturally occurring dietary agents has gained immense interest due to the broad safety window of these compounds. However, many of these compounds are hydrophobic and poorly soluble in water. They frequently display low bioavailability, poor systemic delivery, and low efficacy. To circumvent this problem, we explored a novel approach towards chemoprevention using nanotechnology to deliver luteolin, a natural compound present in green vegetables. We formulated water soluble polymer-encapsulated Nano-Luteolin from hydrophobic luteolin, and studied its anticancer activity against lung cancer and head and neck cancer. In vitro studies demonstrated that, like luteolin, Nano-Luteolin inhibited the growth of lung cancer cells (H292 cell line) and squamous cell carcinoma of head and neck (SCCHN) cells (Tu212 cell line). In Tu212 cells, the IC50 value of Nano-Luteolin was 4.13ÎĽM, and that of luteolin was 6.96ÎĽM. In H292 cells, the IC50 of luteolin was 15.56ÎĽM, and Nano-Luteolin was 14.96ÎĽM. In vivo studies using a tumor xenograft mouse model demonstrated that Nano-Luteolin has a significant inhibitory effect on the tumor growth of SCCHN in comparison to luteolin. Our results suggest that nanoparticle delivery of naturally occurring dietary agents like luteolin has many advantages and may have potential application in chemoprevention in clinical settings
    corecore