6,309 research outputs found
Schematic Models for Active Nonlinear Microrheology
We analyze the nonlinear active microrheology of dense colloidal suspensions
using a schematic model of mode-coupling theory. The model describes the
strongly nonlinear behavior of the microscopic friction coefficient as a
function of applied external force in terms of a delocalization transition. To
probe this regime, we have performed Brownian dynamics simulations of a system
of quasi-hard spheres. We also analyze experimental data on hard-sphere-like
colloidal suspensions [Habdas et al., Europhys. Lett., 2004, 67, 477]. The
behavior at very large forces is addressed specifically
Improvement of Renormalization-Scale Uncertainties Within Empirical Determinations of the b-Quark Mass
Accurate determinations of the MS-bar b-quark mass from
experimental data currently contain three
comparable sources of uncertainty; the experimental uncertainty from moments of
this cross-section, the uncertainty associated with , and the
theoretical uncertainty associated with the renormalization scale. Through
resummation of all logarithmic terms explicitly determined in the perturbative
series by the renormalization-group (RG) equation, it is shown that the
renormalization-scale dependence is virtually eliminated as a source of
theoretical uncertainty in . This resummation also reduces the
estimated effect of higher-loop perturbative contributions, further reducing
the theoretical uncertainties in . Furthermore, such resummation
techniques improve the agreement between the values of the MS-bar b-quark mass
extracted from the various moments of [], obviating the need to
choose an optimummoment for determining . Resummation techniques are
also shown to reduce renormalization-scale dependence in the relation between
b-quark MS-bar and pole mass and in the relation between the pole and
mass.Comment: 19 pages, latex2e, 6 eps figures contained in latex file. Errors
corrected in equations (20)--(22
Investigating heuristic evaluation as a methodology for evaluating pedagogical software: An analysis employing three case studies
This paper looks specifically at how to develop light weight methods of evaluating pedagogically motivated software. Whilst we value traditional usability testing methods this paper will look at how Heuristic Evaluation can be used as both a driving force of Software Engineering Iterative Refinement and end of project Evaluation. We present three case studies in the area of Pedagogical Software and show how we have used this technique in a variety of ways. The paper presents results and reflections on what we have learned. We conclude with a discussion on how this technique might inform on the latest developments on delivery of distance learning. © 2014 Springer International Publishing
A Compact Microchip-Based Atomic Clock Based on Ultracold Trapped Rb Atoms
We propose a compact atomic clock based on ultracold Rb atoms that are
magnetically trapped near the surface of an atom microchip. An interrogation
scheme that combines electromagnetically-induced transparency (EIT) with
Ramsey's method of separated oscillatory fields can achieve atomic shot-noise
level performance of 10^{-13}/sqrt(tau) for 10^6 atoms. The EIT signal can be
detected with a heterodyne technique that provides noiseless gain; with this
technique the optical phase shift of a 100 pW probe beam can be detected at the
photon shot-noise level. Numerical calculations of the density matrix equations
are used to identify realistic operating parameters at which AC Stark shifts
are eliminated. By considering fluctuations in these parameters, we estimate
that AC Stark shifts can be canceled to a level better than 2*10^{-14}. An
overview of the apparatus is presented with estimates of duty cycle and power
consumption.Comment: 15 pages, 11 figures, 5 table
Adjustable microchip ring trap for cold atoms and molecules
We describe the design and function of a circular magnetic waveguide produced
from wires on a microchip for atom interferometry using deBroglie waves. The
guide is a two-dimensional magnetic minimum for trapping weak-field seeking
states of atoms or molecules with a magnetic dipole moment. The design consists
of seven circular wires sharing a common radius. We describe the design, the
time-dependent currents of the wires and show that it is possible to form a
circular waveguide with adjustable height and gradient while minimizing
perturbation resulting from leads or wire crossings. This maximal area geometry
is suited for rotation sensing with atom interferometry via the Sagnac effect
using either cold atoms, molecules and Bose-condensed systems
Promoting fairness in Sheffield
In the light of growing inequalities, several urban areas in the UK established Fairness
Commissions between 2010 and 2013. In one of these areas, Sheffield, there was an attempt
to do something different and innovative. Sheffield on average was, and remains one of the least
deprived major cities in England, but also one of the most unequal. Following the publication of
the Commission’s report which included an analysis of evidence and 90 recommendations,
Sheffield responded by pursuing a number of city-wide initiatives involving different stakeholders.
These included monitoring progress towards a fairer city, action on the living wage, a city-wide
campaign to promote Sheffield as the fairest city, and ‘Sheffield Money’ to provide support for
those households facing financial exclusion. The continuation of austerity measures still creates
severe challenges to the ambitions and work of the Sheffield Fairness Commission, but
experiences have shown how leadership through example and the co-production of an active
campaign can give articulation to a shared desire to address injustices in the city
Mass along the Line of Sight to the Gravitational Lens B1608+656: Galaxy Groups and Implications for H_0
We report the discovery of four groups of galaxies along the line of sight to the B1608+656 gravitational lens system. One group is at the redshift of the primary lensing galaxy (z = 0.631) and appears to have a low mass, with eight spectroscopically confirmed members and an estimated velocity dispersion of 150 ± 60 km s^(-1). The three other groups are in the foreground of the lens. These groups contain ~10 confirmed members each and are located at redshifts of 0.265, 0.426, and 0.52. Two of the three additional groups are centered roughly on the lens system, while the third is centered ~1' south of the lens. We investigate the effect of each of the four groups on the gravitational lensing potential of the B1608+656 system, with a particular focus on the implications for the value of H_0 derived from this system. We find that each group provides an external convergence of ~0.005-0.060, depending on the assumptions made in the calculation. For the B1608+656 system, the stellar velocity dispersion of the lensing galaxy has been measured, thus breaking the mass sheet degeneracy due to the group that is physically associated with the lens. The effect of the other groups along the line of sight can be folded into the overall uncertainties due to large-scale structure (LSS) along the line of sight. Because B1608+656 appears to lie along an overdense line of sight, the LSS will cause the measurement of H_0 to be biased high for this system. This effect could be 5% or greater
Reality in quantum mechanics, Extended Everett Concept, and consciousness
Conceptual problems in quantum mechanics result from the specific quantum
concept of reality and require, for their solution, including the observer's
consciousness into quantum theory of measurements. Most naturally this is
achieved in the framework of Everett's "many-worlds interpretation" of quantum
mechanics. According to this interpretation, various classical alternatives are
perceived by consciousness separately from each other. In the Extended Everett
Concept (EEC) proposed by the present author, the separation of the
alternatives is identified with the phenomenon of consciousness. This explains
classical character of the alternatives and unusual manifestations of
consciousness arising "at the edge of consciousness" (i.e. in sleep or trance)
when its access to "other alternative classical realities" (other Everett's
worlds) becomes feasible. Because of reversibility of quantum evolution in EEC,
all time moments in the quantum world are equivalent while the impression of
flow of time appears only in consciousness. If it is assumed that consciousness
may influence onto probabilities of alternatives (which is consistent in case
of infinitely many Everett's worlds), EEC explains free will, "probabilistic
miracles" (observing low-probability events) and decreasing entropy in the
sphere of life.Comment: 17 pages, 2 figures in EP
Atom chips on direct bonded copper substrates
We present the use of direct bonded copper (DBC) for the straightforward
fabrication of high power atom chips. Atom chips using DBC have several
benefits: excellent copper/substrate adhesion, high purity, thick (> 100
microns) copper layers, high substrate thermal conductivity, high aspect ratio
wires, the potential for rapid (< 8 hr) fabrication, and three dimensional atom
chip structures. Two mask options for DBC atom chip fabrication are presented,
as well as two methods for etching wire patterns into the copper layer. The
wire aspect ratio that optimizes the magnetic field gradient as a function of
power dissipation is determined to be 0.84:1 (height:width). The optimal wire
thickness as a function of magnetic trapping height is also determined. A test
chip, able to support 100 A of current for 2 s without failing, is used to
determine the thermal impedance of the DBC. An assembly using two DBC atom
chips to provide magnetic confinement is also shown.Comment: 8 pages, 5 figure
- …