3 research outputs found
Molecular Analysis Confirming the Introduction of Nile Crocodiles, Crocodylus niloticus Laurenti 1768 (Crocodylidae), in Southern Florida, with an Assessment of Potential for Establishment, Spread, and Impacts.
The state of Florida, USA, has more introduced herpetofauna than any other governmental region on Earth. Four species of nonnative crocodilians have been introduced to Florida (all since 1960), one of which is established. Between 2000–2014 we field-collected three nonnative crocodilians in Miami-Dade County, Florida, and one in Hendry County, Florida. We used DNA barcoding and molecular phylogenetics to determine species identification and native range origin. Also, we described diet, movement, and growth for one crocodile. Our molecular analyses illustrated that two of the crocodiles we collected are most closely related to Nile Crocodiles (Crocodylus niloticus) from South Africa, suggesting this region as a source population. We, thus, documented the first known introduction of C. niloticus in Florida. Two, and possibly three of the introduced crocodiles shared the same haplotype, suggesting they are likely from the same introduction pathway or source. One animal was captured, measured, marked, and released, then recaptured 2 y later allowing us to calculate growth rate (40.5 cm/y) and movement. The most likely route of travel by waterway (i.e., canal) illustrates that this animal traveled at least 29 km from its original capture site. One crocodile escaped from a facility in Hendry County, Florida, and survived in 1,012 ha of semi-wild habitat for three to four years, confirming that this species can survive in southern Florida
Data_Sheet_1_Hematology and biochemistry reference intervals for American crocodiles (Crocodylus acutus) in South Florida.docx
The American crocodile (Crocodylus acutus) is considered a vulnerable species by the International Union for Conservation of Nature (IUCN) Red List across its range and classified as locally threatened in several countries. There is a lack of knowledge involving hematological and physiological parameters in American crocodile populations, limiting our understanding of what are considered “normal” blood analyte results for the species and how to link them with health assessments. In this study, we analyzed 40 hematological and biochemical parameters and estimated reference intervals (RIs) for 35 of them based on 436 clinically healthy wild American crocodiles caught in South Florida between 2015 and 2021. Crocodiles were captured across three areas with different levels of human influence [low = Everglades National Park (ENP), medium = Biscayne Bay Estuary (BBE), and high = Turkey Point Nuclear Power Plant (TP)]. There was very strong-to-strong evidence for an effect of where animals were caught on five analytes: basophils %, phosphorus, proportion of (pr) alpha-2 globulins, absolute count (abs) of gamma globulins, and corticosterone, so no reference values were estimated but general statistics are presented and discussed. From the remaining analytes, we found no evidence that sex or size class had an effect on red blood cell (RBC), azurophils and monocytes abs, triglycerides, and albumin abs. However, we did find moderate-to-strong evidence that sex influenced azurophils % and size class influenced white blood cell (WBC), heterophils %, monocytes %, basophils abs, creatine phosphokinase (CPK), potassium, glucose, bile acids, alpha-1 globulin abs, and alpha-2 globulin pr and abs. Finally, there was strong evidence that both sex and size class influenced PCV, lymphocytes % and abs, eosinophils % and abs, aspartate aminotransferase (AST), calcium, sodium, chloride, total protein, albumin/globulin (A/G) ratio, albumin pr, alpha-1 globulin, and beta globulin abs. Intraspecific analysis showed that size is the variable that most influenced analytes explaining up to 29% of the variation, which relates to our findings based on intraindividual analysis. We compared our results with blood parameters reported for conspecifics as well as closely related species and discussed implication of those results for clinical diagnosis and American crocodile conservation.</p