559 research outputs found

    A Top-Down LC-FTICR MS-Based Strategy for Characterizing Oxidized Calmodulin in Activated Macrophages

    Get PDF
    A liquid chromatography-mass spectrometry (LC-MS)-based approach for characterizing the degree of nitration and oxidation of intact calmodulin (CaM) has been used to resolve ∼250 CaM oxiforms using only 500 ng of protein. The analysis was based on high-resolution data of the intact CaM isoforms obtained by Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS) coupled with an on-line reversed-phase LC separation. Tentative identifications of post-translational modifications (PTMs), such as oxidation or nitration, have been assigned by matching observed protein mass to a database containing all theoretically predicted oxidation products of CaM and verified through a combination of tryptic peptide information (generated from bottom-up analyses) and on-line collisionally induced dissociation (CID) tandem mass spectrometry (MS/MS) at the intact protein level. The reduction in abundance and diversity of oxidatively modified CaM (i.e., nitrated tyrosines and oxidized methionines) induced by macrophage activation has been explored and semiquantified for different oxidation degrees (i.e., no oxidation, moderate, and high oxidation). This work demonstrates the power of the top-down approach to identify and quantify hundreds of combinations of PTMs for single protein target such as CaM and implicate competing repair and peptidase activities to modulate cellular metabolism in response to oxidative stress

    Dextran Penetration Through Nonkeratinized and Keratinized Epithelia in Monkeys

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142019/1/jper0424.pd

    Normative spatiotemporal fetal brain maturation with satisfactory development at 2 years

    Get PDF
    Maturation of the human fetal brain should follow precisely scheduled structural growth and folding of the cerebral cortex for optimal postnatal function1 . We present a normative digital atlas of fetal brain maturation based on a prospective international cohort of healthy pregnant women2 , selected using World Health Organization recommendations for growth standards3 . Their fetuses were accurately dated in the first trimester, with satisfactory growth and neurodevelopment from early pregnancy to 2 years of age4,5 . The atlas was produced using 1,059 optimal quality, three dimensional ultrasound brain volumes from 899 of the fetuses and an automated analysis pipeline6–8 . The atlas corresponds structurally to published magnetic resonance images9 , but with finer anatomical details in deep grey matter. The between study site variability represented less than 8.0% of the total variance of all brain measures, supporting pooling data from the eight study sites to produce patterns of normative maturation. We have thereby generated an average representation of each cerebral hemisphere between 14 and 31 weeks’ gestation with quantification of intracranial volume variability and growth patterns. Emergent asymmetries were detectable from as early as 14 weeks, with peak asymmetries in regions associated with language development and functional lateralization between 20 and 26 weeks’ gestation. These patterns were validated in 1,487 three-dimensional brain volumes from 1,295 different fetuses in the same cohort. We provide a unique spatiotemporal benchmark of fetal brain maturation from a large cohort with normative postnatal growth and neurodevelopment

    Geographies of Medical and Health Humanities: A Cross-Disciplinary Conversation

    Get PDF
    In recent years, both within and beyond academic and clinical spheres, medical and health humanities have become increasingly influential. Drawing from interdisciplinary fields in the humanities, social sciences, and the arts, medical and health humanities present unique lenses for considering nuanced spaces and lived experiences of health and health care; they also help challenge traditional ways that medicine and health care are understood and practiced. This collection brings together practitioners and theorists working broadly in medical health humanities, asking them both to consider their work as temporally and spatially located and to position their practices in conversation with a growing uptake of humanities methods and methodologies in other disciplines. The work of nine contributors uses these themes as a starting point for thinking about the future of medical health humanities in new and potentially even more productive ways

    A morphometric analysis of the infant calvarium and dura

    Get PDF
    Literature addressing the anatomic development of the dura and calvarium during childhood is limited. Nevertheless, histological features of a subdural neomembrane (NM), including its thickness and vascularity, developing in response to an acute subdural hematoma (SDH) have been compared to the dura of adults to estimate when an injury occurred. Therefore, we measured the morphometric growth of the calvarium and dura and the vascular density within the dura during infancy. The mean thicknesses of the calvarium and dura as a function of occipitofrontal circumference (OFC), as well as the mean number of vessels per 25× field, were determined from the right parasagittal midparietal bone lateral to the sagittal suture of 128 infants without a history of head trauma. Our results showed that as OFC increased, the mean thicknesses of the calvarium and dura increased while the vascular density within the dura decreased. Our morphometric data may assist in the interpretation of subdural NM occurring during infancy. We recommend future investigations to confirm and extend our present data, especially by evaluating cases during later infancy and beyond as well as by sampling other anatomic sites from the calvarium. We also recommend morphometric evaluation of subdural NM associated with SDH in infancy and childhood

    A systematic autopsy survey of human infant bridging veins

    Get PDF
    In the first years of life, subdural haemorrhage (SDH) within the cranial cavity can occur through accidental and non-accidental mechanisms as well as from birth-related injury. This type of bleeding is the most common finding in victims of abusive head trauma (AHT). Historically, the most frequent cause of SDHs in infancy is suggested to be traumatic damage to bridging veins traversing from the brain to the dural membrane. However, several alternative hypotheses have been suggested for the cause and origin of subdural bleeding. It has also been suggested by some that bridging veins are too large to rupture through the forces associated with AHT. To date, there have been no systematic anatomical studies on infant bridging veins. During 43 neonatal, infant and young child post-mortem examinations, we have mapped the locations and numbers of bridging veins onto a 3D model of the surface of a representative infant brain. We have also recorded the in situ diameter of 79 bridging veins from two neonatal, one infant and two young children at post-mortem examination. Large numbers of veins, both distant from and directly entering the dural venous sinuses, were discovered travelling between the brain and dural membrane, with the mean number of veins per brain being 54.1 and the largest number recorded as 94. The mean diameter of the bridging veins was 0.93 mm, with measurements ranging from 0.05 to 3.07 mm. These data demonstrate that some veins are extremely small and subjectively, and they appear to be delicate. Characterisation of infant bridging veins will contribute to the current understanding of potential vascular sources of subdural bleeding and could also be used to further develop computational models of infant head injury

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.
    corecore