51 research outputs found

    Phase I clinical trial with IL-2-transfected xenogeneic cells administered in subcutaneous metastatic tumours: clinical and immunological findings

    Get PDF
    Various studies have emphasized an immunodepression state observed at the tumour site. To reverse this defect and based upon animal studies, we initiated a phase I clinical trial of gene therapy in which various doses of xenogeneic monkey fibroblasts (Vero cells) genetically engineered to produce human IL-2 were administered intratumorally in 8 patients with metastatic solid tumours. No severe adverse effect was observed in the 8 patients analysed during this clinical trial even in the highest dose (5 „ 107 cells) group. This absence of toxicity seems to be associated with rapid elimination of Vero-IL-2 cells from the organism. Indeed, exogenous IL-2 mRNA could no longer be detected in the peripheral whole blood 48 hours after Vero-IL-2 cell administration. In addition, we did not find any expression of exogenous IL-2 mRNA in post-therapeutic lesions removed 29 days after the start of therapy. A major finding of this trial concerns the two histological responses of two treated subcutaneous nodules not associated with an apparent clinical response. The relationship between local treatment and tumour regression was supported by replacement of tumour cells by inflammatory cells in regressing lesions and marked induction of T and natural killer cell derived cytokines (IL-2, IL-4, IFNg 
) in post-therapeutic lesions analysed 28 days after the start of Vero-IL-2 administration. Gene therapy using xenogeneic cells as vehicle may therefore present certain advantages over other vectors, such as its complete absence of toxicity. Furthermore, the in vivo biological effect of immunostimulatory genes, i.e IL-2-, may be potentiated by the xenogeneic rejection reaction. © 2000 Cancer Research Campaign http://www.bjcancer.co

    Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma.

    Get PDF
    BACKGROUND: Sorafenib (Sb) is a multiple kinase inhibitor targeting both tumour cell proliferation and angiogenesis that may further act as a potent radiosensitizer by arresting cells in the most radiosensitive cell cycle phase. This phase I open-label, noncontrolled dose escalation study was performed to determine the safety and maximum tolerated dose (MTD) of Sb in combination with radiation therapy (RT) and temozolomide (TMZ) in 17 patients with newly diagnosed high-grade glioma. METHODS: Patients were treated with RT (60 Gy in 2 Gy fractions) combined with TMZ 75 mg m(-2) daily, and Sb administered at three dose levels (200 mg daily, 200 mg BID, and 400 mg BID) starting on day 8 of RT. Thirty days after the end of RT, patients received monthly TMZ (150-200 mg m(-2) D1-5/28) and Sb (400 mg BID). Pharmacokinetic (PK) analyses were performed on day 8 (TMZ) and on day 21 (TMZ&Sb) (Clinicaltrials ID: NCT00884416). RESULTS: The MTD of Sb was established at 200 mg BID. Dose-limiting toxicities included thrombocytopenia (two patients), diarrhoea (one patient) and hypercholesterolaemia (one patient). Sb administration did not affect the mean area under the curve(0-24) and mean Cmax of TMZ and its metabolite 5-amino-imidazole-4-carboxamide (AIC). Tmax of both TMZ and AIC was delayed from 0.75 (TMZ alone) to 1.5 h (combined TMZ/Sb). The median progression-free survival was 7.9 months (95% confidence interval (CI): 5.4-14.55), and the median overall survival was 17.8 months (95% CI: 14.7-25.6). CONCLUSIONS: Although Sb can be combined with RT and TMZ, significant side effects and moderate outcome results do not support further clinical development in malignant gliomas. The robust PK data of the TMZ/Sb combination could be useful in other cancer settings

    Advancing tools to promote health equity across European Union regions : The EURO-HEALTHY project

    Get PDF
    Population health measurements are recognised as appropriate tools to support public health monitoring. Yet, there is still a lack of tools that offer a basis for policy appraisal and for foreseeing impacts on health equity. In the context of persistent regional inequalities, it is critical to ascertain which regions are performing best, which factors might shape future health outcomes and where there is room for improvement. Under the EURO-HEALTHY project, tools combining the technical elements of multi-criteria value models and the social elements of participatory processes were developed to measure health in multiple dimensions and to inform policies. The flagship tool is the Population Health Index (PHI), a multidimensional measure that evaluates health from the lens of equity in health determinants and health outcomes, further divided into sub-indices. Foresight tools for policy analysis were also developed, namely: (1) scenarios of future patterns of population health in Europe in 2030, combining group elicitation with the Extreme-World method and (2) a multi-criteria evaluation framework informing policy appraisal (case study of Lisbon). Finally, a WebGIS was built to map and communicate the results to wider audiences. The Population Health Index was applied to all European Union (EU) regions, indicating which regions are lagging behind and where investments are most needed to close the health gap. Three scenarios for 2030 were produced - (1) the 'Failing Europe' scenario (worst case/increasing inequalities), (2) the 'Sustainable Prosperity' scenario (best case/decreasing inequalities) and (3) the 'Being Stuck' scenario (the EU and Member States maintain the status quo). Finally, the policy appraisal exercise conducted in Lisbon illustrates which policies have higher potential to improve health and how their feasibility can change according to different scenarios. The article makes a theoretical and practical contribution to the field of population health. Theoretically, it contributes to the conceptualisation of health in a broader sense by advancing a model able to integrate multiple aspects of health, including health outcomes and multisectoral determinants. Empirically, the model and tools are closely tied to what is measurable when using the EU context but offering opportunities to be upscaled to other settings

    A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes

    Full text link

    Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice

    No full text
    An inflammatory reaction is a classical feature of radiation exposure and appears to be a key event in the development of the acute radiation syndrome. We have investigated the radiation-induced inflammatory response in C57BL6/J mice after total abdominal or total-body irradiation at a dose of 15 Gy. Our goal was to determine the radiation-induced inflammatory response of the gut and to study the consequences of abdominal irradiation for the intestine and for the lungs as a distant organ. A comparison with total-body irradiation was used to take into account the hematopoietic response in the inflammatory process. For both irradiation regimens, systemic and intestinal responses were evaluated. A systemic inflammatory reaction was found after abdominal and total-body irradiation, concomitant with increased cytokine and chemokine production in the jejunum of irradiated mice. In the lungs, the radiation-induced changes in the production of cytokines and chemokines and in the expression of adhesion molecules after both abdominal and total-body irradiation indicate a possible abscopal effect of radiation in our model. The effects observed in the lungs after irradiation of the abdomino-pelvic region may be caused by circulating inflammatory mediators consequent to the gut inflammatory response. © 2005 by Radiation Research Society
    • 

    corecore