59 research outputs found
Recommended from our members
Regulation of ligand-independent notch signal through intracellular trafficking
Notch signaling is an evolutionarily conserved mechanism that defines a key cell fate control mechanism in metazoans. Notch signaling relies on the surface interaction between the Notch receptor and membrane bound ligands in an apposing cell. In our recent study, we uncover a non-canonical receptor activation path that relies on a ligand-independent, intracellular activation of the receptor as it travels through the endosomal compartments. We found that Notch receptor, targeted for degradation lysosomal degradation through multivesicular bodies (MVBs) is “diverted” toward activation upon mono-ubiquitination through a synergy between the ubiquitin ligase Deltex, the non-visual β-arrestin Kurtz and the ESCRT-III component Shrub. This activation path is not universal but appears to depend on the cellular context
Down-regulation of Delta by proteolytic processing
Notch signaling regulates cell fate decisions during development through local cell interactions. Signaling is triggered by the interaction of the Notch receptor with its transmembrane ligands expressed on adjacent cells. Recent studies suggest that Delta is cleaved to release an extracellular fragment, DlEC, by a mechanism that involves the activity of the metalloprotease Kuzbanian; however, the functional significance of that cleavage remains controversial. Using independent functional assays in vitro and in vivo, we examined the biological activity of purified soluble Delta forms and conclude that Delta cleavage is an important down-regulating event in Notch signaling. The data support a model whereby Delta inactivation is essential for providing the critical ligand/receptor expression differential between neighboring cells in order to distinguish the signaling versus the receiving partner
Recommended from our members
Drosophila Protein interaction Map (DPiM): A paradigm for metazoan protein complex interactions
Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein—especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex “map” provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map
Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal
The ESCRT-III complex component Shrub plays a pivotal rate-limiting step in late endosomal ligand-independent Notch activation
Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal
The ESCRT-III complex component Shrub plays a pivotal rate-limiting step in late endosomal ligand-independent Notch activation
Recommended from our members
Genetic Circuitry of Survival Motor Neuron, the Gene Underlying Spinal Muscular Atrophy
The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA.Stem Cell and Regenerative Biolog
Molecular Structure and Dimeric Organization of the Notch Extracellular Domain as Revealed by Electron Microscopy
Background: The Notch receptor links cell fate decisions of one cell to that of the immediate cellular neighbor. In humans, malfunction of Notch signaling results in diseases and congenital disorders. Structural information is essential for gaining insight into the mechanism of the receptor as well as for potentially interfering with its function for therapeutic purposes. Methodology/Principal Findings: We used the Affinity Grid approach to prepare specimens of the Notch extracellular domain (NECD) of the Drosophila Notch and human Notch1 receptors suitable for analysis by electron microscopy and three-dimensional (3D) image reconstruction. The resulting 3D density maps reveal that the NECD structure is conserved across species. We show that the NECD forms a dimer and adopts different yet defined conformations, and we identify the membrane-proximal region of the receptor and its ligand-binding site. Conclusions/Significance: Our results provide direct and unambiguous evidence that the NECD forms a dimer. Our studies further show that the NECD adopts at least three distinct conformations that are likely related to different functional states of the receptor. These findings open the way to now correlate mutations in the NECD with its oligomeric state and conformation
Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice
The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFPSAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues
- …