252 research outputs found

    Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor

    Get PDF
    AbstractBackground: Active-transport processes perform a vital function in the life of a cell, maintaining cell homeostasis and allowing access of nutrients. Maltodextrin/maltose-binding protein (MBP; Mr = 40K) is a receptor protein which serves as an initial high-affinity binding component of the active-transport system of maltooligosaccharides in bacteria. MBP also participates in chemotaxis towards maltooligosaccharides. The interaction between MBP and specific cytoplasmic membrane proteins initiates either active transport or chemotaxis. In order to gain new understanding of the function of MBP, especially its versatility in binding different linear and cyclic oligosaccharides with similar affinities, we have undertaken high-resolution X-ray analysis of three oligosaccharide-bound structures.Results: The structures of MBP complexed with maltose, maltotriose and maltotetraose have been refined to high resolutions (1.67 to 1.8 Å). These structures provide details at the atomic level of many features of oligosaccharide binding. The structures reveal differences between buried and surface binding sites and show the importance of hydrogen bonds and van der Waals interactions, especially those resulting from aromatic residue stacking. Insights are provided into the structural plasticity of the protein, the binding affinity and the binding specificity with respect to α/β anomeric preference and oligosaccharide length. In addition, the structures demonstrate the different conformations that can be adopted by the oligosaccharide within the complex.Conclusions: MBP has a two-domain structure joined by a hinge-bending region which contains the substrate-binding groove. The bound maltooligosaccharides have a ribbon-like structure: the edges of the ribbon are occupied by polar hydroxyl groups and the flat surfaces are composed of nonpolar patches of the sugar ring faces. The polar groups and nonpolar patches are heavily involved in forming hydrogen bonds and van der Waals contacts, respectively, with complimentary residues in the groove. Hinge-bending between the two domains enables the participation of both domains in the binding and sequestering of the oligosaccharides. Changes in the subtle contours of the binding site allow binding of maltodextrins of varying length with similarly high affinities. The fact that the three bound structures are essentially identical ensures productive interaction with the oligomeric membrane proteins, which are distinct for transport and chemotaxis

    Mutations in maltose-binding protein that alter affinity and solubility properties

    Get PDF
    Maltose-binding protein (MBP) from Escherichia coli has been shown to be a good substrate for protein engineering leading to altered binding (Marvin and Hellinga, Proc Natl Acad Sci U S A 98:4955–4960, 2001a) and increased affinity (Marvin and Hellinga, Nat Struct Biol 8:795–798, 2001b; Telmer and Shilton, J Biol Chem 278:34555–34567, 2003). It is also used in recombinant protein expression as both an affinity tag and a solubility tag. We isolated mutations in MBP that enhance binding to maltodextrins 1.3 to 15-fold, using random mutagenesis followed by screening for enhanced yield in a microplate-based affinity purification. We tested the mutations for their ability to enhance the yield of a fusion protein that binds poorly to immobilized amylose and their ability to enhance the solubility of one or more aggregation-prone recombinant proteins. We also measured dissociation constants of the mutant MBPs that retain the solubility-enhancing properties of MBP and combined two of the mutations to produce an MBP with a dissociation constant 10-fold tighter than wild-type MBP. Some of the mutations we obtained can be rationalized based on the previous work, while others indicate new ways in which the function of MBP can be modified

    Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics

    Get PDF
    Periplasmic binding proteins (PBPs) are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE) experiments have shown that the maltose binding protein (MBP) - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime) mixture comprising an open state (approx 95%), and a minor partially closed state (approx 5%). Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175–184) is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.

    Get PDF
    Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.The workshop was supported by funding to RCSB PDB by the National Science Foundation (DBI 1338415); PDBe by the Wellcome Trust (104948); PDBj by JST-NBDC; BMRB by the National Institute of General Medical Sciences (GM109046); D3R by the National Institute of General Medical Sciences (GM111528); registration fees from industrial participants; and tax-deductible donations to the wwPDB Foundation by the Genentech Foundation and the Bristol-Myers Squibb Foundation.This is the final version of the article. It first appeared from Cell Press via https://doi.org//10.1016/j.str.2016.02.01

    Tailoring nanopores for efficient sensing of different biomolecules

    No full text
    • …
    corecore