648 research outputs found

    Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes

    Get PDF
    Coacervates droplets have long been considered as potential protocells to mimic living cells. However, these droplets lack a membrane and are prone to coalescence, limiting their ability to survive, interact, and organize into higher-order assemblies. This work shows that tyrosine-rich peptide conjugates can undergo liquid–liquid phase separation in a well-defined pH window and transform into stable membrane-enclosed protocells by enzymatic oxidation and cross-linking at the liquid–liquid interface. The oxidation of the tyrosine-rich peptides into dityrosine creates a semipermeable, flexible membrane around the coacervates with tunable thickness, which displays strong intrinsic fluorescence, and stabilizes the coacervate protocells against coalescence. The membranes have an effective molecular weight cut-off of 2.5 kDa, as determined from the partitioning of small dyes and labeled peptides, RNA, and polymers into the membrane-enclosed coacervate protocells. Flicker spectroscopy reveals a membrane bending rigidity of only 0.1kBT, which is substantially lower than phospholipid bilayers despite a larger membrane thickness. Finally, it is shown that enzymes can be stably encapsulated inside the protocells and be supplied with substrates from outside, which opens the way for these membrane-bound compartments to be used as molecularly crowded artificial cells capable of communication or as a vehicle for drug delivery.publishedVersio

    Advancing Models and Theories for Digital Behavior Change Interventions

    Get PDF
    To be suitable for informing digital behavior change interventions, theories and models of behavior change need to capture individual variation and changes over time. The aim of this paper is to provide recommendations for development of models and theories that are informed by, and can inform, digital behavior change interventions based on discussions by international experts, including behavioral, computer, and health scientists and engineers. The proposed framework stipulates the use of a state-space representation to define when, where, for whom, and in what state for that person, an intervention will produce a targeted effect. The "state" is that of the individual based on multiple variables that define the "space" when a mechanism of action may produce the effect. A state-space representation can be used to help guide theorizing and identify crossdisciplinary methodologic strategies for improving measurement, experimental design, and analysis that can feasibly match the complexity of real-world behavior change via digital behavior change interventions

    Endocytosis of coacervates into liposomes

    Get PDF
    [Image: see text] Recent studies have shown that the interactions between condensates and biological membranes are of functional importance. Here, we study how the interaction between complex coacervates and liposomes as model systems can lead to wetting, membrane deformation, and endocytosis. Depending on the interaction strength between coacervates and liposomes, the wetting behavior ranged from nonwetting to engulfment (endocytosis) and complete wetting. Endocytosis of coacervates was found to be a general phenomenon: coacervates made from a wide range of components could be taken up by liposomes. A simple theory taking into account surface energies and coacervate sizes can explain the observed morphologies. Our findings can help to better understand condensate–membrane interactions in cellular systems and provide new avenues for intracellular delivery using coacervates

    Behavior change interventions: the potential of ontologies for advancing science and practice

    Get PDF
    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science

    Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects: a CT scan-based finite element analysis

    Get PDF
    BACKGROUND: In metastatic bone disease, prophylactic fixation of impending long bone fracture is preferred over surgical treatment of a manifest fracture. There are no reliable guidelines for prediction of pathological fracture risk, however. We aimed to determine whether finite element (FE) models constructed from quantitative CT scans could be used for predicting pathological fracture load and location in a cadaver model of metastatic bone disease. MATERIAL AND METHODS: Subject-specific FE models were constructed from quantitative CT scans of 11 pairs of human femora. To simulate a metastatic defect, a transcortical hole was made in the subtrochanteric region in one femur of each pair. All femora were experimentally loaded in torsion until fracture. FE simulations of the experimental set-up were performed and torsional stiffness and strain energy density (SED) distribution were determined. RESULTS: In 15 of the 22 cases, locations of maximal SED fitted with the actual fracture locations. The calculated torsional stiffness of the entire femur combined with a criterion based on the local SED distribution in the FE model predicted 82% of the variance of the experimental torsional failure load. INTERPRETATION: In the future, CT scan-based FE analysis may provide a useful tool for identification of impending pathological fractures requiring prophylactic stabilization

    Viruses: incredible nanomachines. New advances with filamentous phages

    Get PDF
    During recent decades, bacteriophages have been at the cutting edge of new developments in molecular biology, biophysics, and, more recently, bionanotechnology. In particular filamentous viruses, for example bacteriophage M13, have a virion architecture that enables precision building of ordered and defect-free two and three-dimensional structures on a nanometre scale. This could not have been possible without detailed knowledge of coat protein structure and dynamics during the virus reproduction cycle. The results of the spectroscopic studies conducted in our group compellingly demonstrate a critical role of membrane embedment of the protein both during infectious entry of the virus into the host cell and during assembly of the new virion in the host membrane. The protein is effectively embedded in the membrane by a strong C-terminal interfacial anchor, which together with a simple tilt mechanism and a subtle structural adjustment of the extreme end of its N terminus provides favourable thermodynamical association of the protein in the lipid bilayer. This basic physicochemical rule cannot be violated and any new bionanotechnology that will emerge from bacteriophage M13 should take this into account

    Cartilage collagen structure upon knee joint distraction and high tibial osteotomy as measured with T2-mapping MRI - post-hoc analyses of two RCTs

    Get PDF
    Objective High tibial osteotomy (HTO) and knee joint distraction (KJD) are joint-preserving treatments for knee osteoarthritis (OA) that have shown good clinical results and cartilage thickness increase. In this exploratory study, cartilage T2 relaxation times, as a measure of collagen structure, are evaluated after both treatments, and compared to natural OA progression. Design Ten patients indicated for total knee arthroplasty (TKA) were treated with KJD (KJDTKA). Thirty patients indicated for HTO were treated with KJD (KJDHTO; n = 10) or HTO (n = 20). 3T T2-mapping MRI scans were performed before and one (KJD groups only) and two years after treatment, from which cartilage was segmented and the volume and T2 relaxation times were calculated. Patients were matched with untreated patients from the Osteoarthritis Initiative (OAI) to compare the change in T2 values over time. Results KJDHTO (n = 8) and HTO (n = 17) patients both showed statistically significant increases in T2 values (worsening) but no volume changes. KJDTKA patients (n = 8) only showed a tendency for (first-year) T2 value increase, and a significant volume increase in the most affected compartment (MAC). There were no significant differences between the three groups. All treated patients combined showed a significantly higher increase in T2 times than untreated patients from the OAI for both femur and tibia. Conclusions KJD and HTO cause an increase in cartilage T2 relaxation times, which could indicate loss or reorganization of collagen structure integrity. In TKA-indicated KJD patients, this goes paired with volume increase, indicating it may be the result of maturation of newly formed cartilage

    Конкуренція університетів: світовий досвід і українські реалії

    Get PDF
    Досліджено процеси конкуренції вищих навчальних закладів; обґрунтовано основні критерії формування рейтингів університетів; виявлено взаємозв’язок між високим рейтингом університету і показником його елітності; розкрито значення капіталізації в конкурентних перевагах вищих навчальних закладів; визначено роль елітних університетів у постіндустріальному розвитку суспільства.Исследованы процессы конкуренции высших учебных заведений; обоснованы основные критерии формирования рейтингов университетов; показана взаимосвязь между высоким рейтингом университета и показателем его элитности; раскрыто значение капитализации в конкурентных преимуществах высших учебных заведений; определена роль элитных университетов в постиндустриальном развитии общества.The processes of competition of universities are studi ed, proved the main criteria for the formation of university rankings, found the relationship between highly-rated university and the rate of its elite, disclosed the value of capitalization in the competitive advantages of higher education institutions, and determined the role of elite universities in the post-industrial development

    5-Formylcytosine can be a stable DNA modification in mammals.

    Get PDF
    5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.This work was supported by the Cancer Research UK (C14303/A17197, S.B.), The Wellcome Trust (WT099232, S.B.; WT095645/Z/11/Z, W.R.) and the BBSRC (BB/K010867/1, W.R.).This is the accepted manuscript. It is currently embargoed pending publication
    corecore