248 research outputs found

    Length of the weaning period affects postweaning growth, health, and carcass merit of ranch-direct beef calves weaned during the fall

    Get PDF
    Bovine respiratory disease (BRD) is the most economically devastating feedlot disease. Risk factors associated with incidence of BRD include (1) stress associated with maternal separation, (2) stress associated with introduction to an unfamiliar environment, (3) poor intake associated with introduction of novel feedstuffs into the animal\u27s diet, (4) exposure to novel pathogens upon transport to a feeding facility and commingling with unfamiliar cattle, (5) inappropriately administered respiratory disease vaccination programs, and (6) poor response to respiratory disease vaccination programs. Management practices that are collectively referred to as preconditioning are thought to minimize damage to the beef carcass from the BRD complex. Preconditioning management reduces the aforementioned risk factors for respiratory disease by (1) using a relatively long ranch-of-origin weaning period following maternal separation, (2) exposing calves to concentrate-type feedstuffs, and (3) producing heightened resistance to respiratory disease-causing organisms through a preweaning vaccination program. The effectiveness of such programs for preserving animal performance is highly touted by certain segments of the beef industry. Ranch-of-origin weaning periods of up to 60 days are suggested for preconditioning beef calves prior to sale; however, optimal length of the ranch-of-origin weaning period has not been determined experimentally. The objective of this study was to test the validity of beef industry assumptions about appropriate length of ranch-of-origin weaning periods for calves aged 160 to 220 days and weaned during the fall

    The mating-specific Gα interacts with a kinesin-14 and regulates pheromone-induced nuclear migration in budding yeast

    Get PDF
    As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Gα protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating. © 2009 by The American Society for Cell Biology

    Local CpG density affects the trajectory and variance of age-associated DNA methylation changes

    Get PDF
    Acknowledgements We thank Riccardo Marioni, Chris Haley, Ailith Ewing, David Porteous, Chris Ponting, Rob Illingworth, Tamir Chandra, Sara Hagg, Yunzhang Wang, Chantriolnt-Andreas Kapourani, Nick Gilbert, Hannes Becher and members of the Sproul lab for helpful discussions about the study and the manuscript. This work has made use of the resources provided by the University of Edinburgh digital research services and the MRC IGC compute cluster. We are grateful to all the families who took part in the Generation Scotland study along with the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the entire Generation Scotland team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants, and nurses. Peer review information Anahita Bishop and Kevin Pang were the primary editors of this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Review history The review history is available as Additional file 3. Funding DS is a Cancer Research UK Career Development fellow (reference C47648/A20837), and work in his laboratory is also supported by an MRC university grant to the MRC Human Genetics Unit. LK is a cross-disciplinary postdoctoral fellow supported by funding from the University of Edinburgh and Medical Research Council (MC_UU_00009/2). S.R.C. and I.J.D. were supported by a National Institutes of Health (NIH) research grant R01AG054628, and S.R.C is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (221890/Z/20/Z). AMM is supported by the Wellcome Trust (104036/Z/14/Z, 216767/Z/19/Z, 220857/Z/20/Z) and UKRI MRC (MC_PC_17209, MR/S035818/1). PMV acknowledges support from the Australian National Health and Medical Research Council (1113400) and the Australian Research Council (FL180100072). DMH is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Reference 213674/Z/18/Z). We thank the LBC1936 participants and team members who contributed to the study. Further study information can be found at https://www.ed.ac.uk/lothian-birth-cohorts. The LBC1936 is supported by a jointly funded grant from the BBSRC and ESRC (BB/W008793/1), and also by Age UK (Disconnected Mind project), the Medical Research Council (G0701120, G1001245, MR/M013111/1, MR/R024065/1), and the University of Edinburgh. Genotyping of LBC1936 was funded by the BBSRC (BB/F019394/1), and methylation typing of LBC1936 was supported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, The Wellcome Trust Institutional Strategic Support Fund, The University of Edinburgh, and The University of Queensland. Work on Generation Scotland was supported by a Wellcome Strategic Award “STratifying Resilience and Depression Longitudinally” (STRADL; 104036/Z/14/Z) to AMM, KLE, and others, and an MRC Mental Health Data Pathfinder Grant (MC_PC_17209) to AMM. Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). DNA methylation profiling and analysis of the GS:SFHS samples was supported by Wellcome Investigator Award 220857/Z/20/Z and Grant 104036/Z/14/Z (PI: AM McIntosh) and through funding from NARSAD (Ref: 27404; awardee: Dr DM Howard) and the Royal College of Physicians of Edinburgh (Sim Fellowship; Awardee: Dr HC Whalley).Peer reviewedPublisher PD

    Observation of the Dynamic Beta Effect at CESR with CLEO

    Get PDF
    Using the silicon strip detector of the CLEO experiment operating at the Cornell Electron-positron Storage Ring (CESR), we have observed that the horizontal size of the luminous region decreases in the presence of the beam-beam interaction from what is expected without the beam-beam interaction. The dependence on the bunch current agrees with the prediction of the dynamic beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer

    Get PDF
    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly associated with FOXA1 methylation and downregulation of FOXA1 expression, providing physiological evidence to our findings that FOXA1 expression is regulated by methylation and chromatin silencing and that BRCA1 maintains FOXA1 expression through suppressing FOXA1 gene methylation in breast cancer.Oncogene advance online publication, 22 December 2014; doi:10.1038/onc.2014.421.published_or_final_versio

    Divergence of Mammalian Higher Order Chromatin Structure Is Associated with Developmental Loci

    Get PDF
    Several recent studies have examined different aspects of mammalian higher order chromatin structure - replication timing, lamina association and Hi-C inter-locus interactions - and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution
    corecore