30 research outputs found

    Consumption of plant food supplements in the Netherlands.

    Get PDF
    The use of food supplements containing herbs or other botanical ingredients (plant food supplements, PFS) is on the rise. In some cases, PFS can contain compounds that are toxic and may pose a health risk. To assess the potential health risks, information on the consumption of PFS is required, however, this was lacking for the Netherlands. In the current study, the consumption of PFS was investigated for several subgroups in the Dutch population, including children. Data from the Dutch National Food Consumption Surveys were used to get a first impression on the consumption of PFS. To obtain more detailed information, a specific PFS consumption survey was performed using online questionnaires. First, a screening survey was performed among a representative sample of 75 100 adults and children of the Dutch population, followed by a main survey among 739 selected PFS users in eight different age and gender subgroups. The prevalence of PFS users in the Dutch population was approximately 10% for men, 17% for women and 13% for children. A wide variety of PFS was used, with around 600 different PFS reported, containing 345 different botanicals. The most frequently used botanicals were echinacea (Echinacea purpurea), ginkgo (Ginkgo biloba), cranberry (Vaccinium macrocarpon), ginseng (Panax ginseng) and algae (such as species belonging to the genus Spirulina or Chlorella). Because PFS are widely used in the Dutch population, it is important to evaluate the potential risks associated with PFS consumption in the Netherlands, including potential herb-drug interactions. The data collected in this study are of great value to assess these risks

    The MCRA toolbox of models and data to support chemical mixture risk assessment

    Get PDF
    A model and data toolbox is presented to assess risks from combined exposure to multiple chemicals using probabilistic methods. The Monte Carlo Risk Assessment (MCRA) toolbox, also known as the EuroMix toolbox, has more than 40 modules addressing all areas of risk assessment, and includes a data repository with data collected in the EuroMix project. This paper gives an introduction to the toolbox and illustrates its use with examples from the EuroMix project. The toolbox can be used for hazard identification, hazard characterisation, exposure assessment and risk characterisation. Examples for hazard identification are selection of substances relevant for a specific adverse outcome based on adverse outcome pathways and QSAR models. Examples for hazard characterisation are calculation of benchmark doses and relative potency factors with uncertainty from dose response data, and use of kinetic models to perform in vitro to in vivo extrapolation. Examples for exposure assessment are assessing cumulative exposure at external or internal level, where the latter option is needed when dietary and non-dietary routes have to be aggregated. Finally, risk characterisation is illustrated by calculation and display of the margin of exposure for single substances and for the cumulation, including uncertainties derived from exposure and hazard characterisation estimates.</p

    Differential Modulation of TNF-α–Induced Apoptosis by Neisseria meningitidis

    Get PDF
    Infections by Neisseria meningitidis show duality between frequent asymptomatic carriage and occasional life-threatening disease. Bacterial and host factors involved in this balance are not fully understood. Cytopathic effects and cell damage may prelude to pathogenesis of isolates belonging to hyper-invasive lineages. We aimed to analyze cell–bacteria interactions using both pathogenic and carriage meningococcal isolates. Several pathogenic isolates of the ST-11 clonal complex and carriage isolates were used to infect human epithelial cells. Cytopathic effect was determined and apoptosis was scored using several methods (FITC-Annexin V staining followed by FACS analysis, caspase assays and DNA fragmentation). Only pathogenic isolates were able to induce apoptosis in human epithelial cells, mainly by lipooligosaccharide (endotoxin). Bioactive TNF-α is only detected when cells were infected by pathogenic isolates. At the opposite, carriage isolates seem to provoke shedding of the TNF-α receptor I (TNF-RI) from the surface that protect cells from apoptosis by chelating TNF-α. Ability to induce apoptosis and inflammation may represent major traits in the pathogenesis of N. meningitidis. However, our data strongly suggest that carriage isolates of meningococci reduce inflammatory response and apoptosis induction, resulting in the protection of their ecological niche at the human nasopharynx

    Prioritization of chemicals in food for risk assessment by integrating exposure estimates and new approach methodologies: A next generation risk assessment case study.

    No full text
    Next generation risk assessment is defined as a knowledge-driven system that allows for cost-efficient assessment of human health risk related to chemical exposure, without animal experimentation. One of the key features of next generation risk assessment is to facilitate prioritization of chemical substances that need a more extensive toxicological evaluation, in order to address the need to assess an increasing number of substances. In this case study focusing on chemicals in food, we explored how exposure data combined with the Threshold of Toxicological Concern (TTC) concept could be used to prioritize chemicals, both for existing substances and new substances entering the market. Using a database of existing chemicals relevant for dietary exposure we calculated exposure estimates, followed by application of the TTC concept to identify substances of higher concern. Subsequently, a selected set of these priority substances was screened for toxicological potential using high-throughput screening (HTS) approaches. Remarkably, this approach resulted in alerts for a selection of substances that are already on the market and represent relevant exposure in consumers. Taken together, the case study provides proof-of-principle for the approach taken to identify substances of concern, and this approach can therefore be considered a supportive element to a next generation risk assessment strategy

    The Norwegian biomonitoring study from the EU project EuroMix: Levels of phenols and phthalates in 24-hour urine samples and exposure sources from food and personal care products

    No full text
    Background Exposure to multiple chemicals occurs daily through several routes; diet, inhalation and dermal contact. Real-life exposure assessment is needed to understand the risk. Therefore, a human biomonitoring (BM) study was performed to examine the plausibility of source-to-dose calculations for chemical mixtures in the Horizon 2020 EuroMix project. Objectives To provide a detailed description of the design of the EuroMix BM study, and to present the initial results for urinary phenols and phthalates and to describe their exposure determinants from foods and personal care products (PCPs). Method Adults (44 males and 100 females) kept detailed diaries on their food consumption, PCP use and handling of cash receipts. Urine samples were collected over the same 24-hour period. Urinary levels of four parabens, five bisphenols, oxybenzone/benzophenone-3 (OXBE), triclosan (TCS), triclocarban (TCC) and metabolites of eight phthalates and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) were analysed by ultra-high-performance liquid chromatography and tandem mass spectrometry. Multivariable linear regressions were performed between PCPs/food categories and each dependent chemical variable separately, and were only sex-stratified when an interactions between sex and the independent variable was significant. Results The detection rate for the metabolites of phthalates and DINCH, and bisphenol A (BPA) and TCS in urine was 88–100%, while bisphenol S (BPS) and bisphenol F (BPF) were only found in 29% and 4% of the urine samples, respectively. Bisphenol B (BPB), bisphenol AF (BPAF) and TCC were not detected. Food groups associated with phenol exposure were meat, bread, beverages and butter and oil. Food determinants for phthalate exposure were sweets, butter and oil, fruit and berries and other foods. The only positive association between the use of PCPs and phenols was found between BPA and lip gloss/balm. Phthalate exposure was associated with the use of shower gel, hand cream (females), toothpaste, anti-wrinkle cream (females) and shaving products (males). Conclusion The participants in the EuroMix BM study were exposed to a mixture of phenols and phthalates. A variety of food categories and PCPs were found to be possible sources of these chemicals. This indicates a complex pattern of exposure to numerous chemicals from multiple sources, depending on individual diet and PCP preferences
    corecore