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A B S T R A C T

A model and data toolbox is presented to assess risks from combined exposure to multiple chemicals using
probabilistic methods. The Monte Carlo Risk Assessment (MCRA) toolbox, also known as the EuroMix toolbox,
has more than 40 modules addressing all areas of risk assessment, and includes a data repository with data
collected in the EuroMix project. This paper gives an introduction to the toolbox and illustrates its use with
examples from the EuroMix project. The toolbox can be used for hazard identification, hazard characterisation,
exposure assessment and risk characterisation. Examples for hazard identification are selection of substances
relevant for a specific adverse outcome based on adverse outcome pathways and QSAR models. Examples for
hazard characterisation are calculation of benchmark doses and relative potency factors with uncertainty from
dose response data, and use of kinetic models to perform in vitro to in vivo extrapolation. Examples for exposure
assessment are assessing cumulative exposure at external or internal level, where the latter option is needed
when dietary and non-dietary routes have to be aggregated. Finally, risk characterisation is illustrated by cal-
culation and display of the margin of exposure for single substances and for the cumulation, including un-
certainties derived from exposure and hazard characterisation estimates.

1. Introduction

Human activities have drastically increased the number of chemical
substances to which we are exposed and which might have a negative
impact on our health. Chemical risk assessment has focused tradition-
ally on potential risks of single substances. However, multiple sub-
stances can have the same health effect, so their combined effects on the
same phenomenological endpoint should be assessed (Drakvik et al.,
2020). Consequently, the need was perceived to develop risk assess-
ment methods for combined exposure to multiple substances, i.e. mix-
tures of substances. The current legislative requirements for risk as-
sessment of mixtures were recently reviewed (Rotter et al., 2018).

The tasks for mixture risk assessment are not trivial. First, decisions

are needed regarding which chemical substances should be evaluated
together in an assessment group (AG) when considering a specific ad-
verse outcome (AO). For those substances, data or assumptions on both
exposure and hazard are needed. A specific human population group
has to be defined as the object of protection. Exposure might need to be
aggregated over several sources, such as dietary exposure, dermal or
inhalation exposure, sometimes for specific population groups, e.g.
those working in a risky profession like pesticide spraying. Hazard data
can be obtained from in vivo, in vitro and in silico approaches. The latter
two categories require biological modelling, e.g. using adverse outcome
pathways (AOPs), to assess the relevance of responses for the defined in
vivo AO. The most common assumption for cumulating effects is the
dose addition (DA) model, but its validity might need to be checked
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(EFSA, 2013a, 2019; OECD, 2018). Under the DA model the relative
potencies of substances are expressed as relative potency factors (RPFs).
It should be noted that RPFs are typically different at the external or
internal biological level. Kinetic modelling can be used to bridge the
gap between external and internal doses by constructing in vitro to in
vivo extrapolation (IVIVE) models. Inevitably, limitations in data
availability lead to the necessity to make model assumptions and to
uncertainty (EFSA, 2018). Many parts of the data will be uncertain, but
this has often been ignored in practical work, notably for AG mem-
bership and RPF estimates.

One of the major aims of the EuroMix project was to integrate ha-
zard, exposure, toxicokinetic and toxicodynamic modelling approaches
for mixtures of chemicals together with example data sets into a web-
based model and data toolbox openly accessible for stakeholders. The
system is able to assess quantifiable uncertainties and their influence on
the results of cumulative and aggregated risk assessment. For this, it
uses a 2D Monte Carlo approach based on quantifiable variability and
uncertainty in the inputs, where an inner loop estimates variability
distributions for specific outputs, characterising the variability between
individuals or individual-days. Then an outer loop estimates un-
certainty distributions for specific outputs, e.g. 95% confidence limits
for a percentile of a variability distribution.

In the EuroMix project, the toolbox has been developed as version 9
of the Monte Carlo Risk Assessment (MCRA) platform (see van der Voet
et al., 2015 for a description of the previous version MCRA 8). The
toolbox also integrates the method innovations recently developed for
EFSA in their approach to cumulative exposure assessment and im-
plemented as well in MCRA version 8.3 (van Klaveren et al., 2019a).
MCRA is a web-based platform (https://mcra.rivm.nl) which employs a
high-performance computation cluster to run simulations. For a full
description of the toolbox we refer to the online reference doc-
umentation (MCRA, 2019). The toolbox can be used in conjunction
with the EuroMix handbook (Zilliacus et al., 2019a). In this paper the
aim is to provide an overview of the available methods and illustrate
the use of the toolbox with several examples for hazard identification,
hazard characterisation, exposure assessment and risk characterisation.
These examples are not full case studies, but are only intended to il-
lustrate existing and new functionalities that are available in the
toolbox.

In section 2.1 of this paper we describe the toolbox of models and
data that has resulted from the EuroMix project. The data collected in
the EuroMix project are summarised in section 2.2. In sections 2.3-2.6
short descriptions are given of the methods implemented in the toolbox
for the four areas of risk assessment, i.e. hazard identification, hazard
characterisation, exposure assessment and risk characterisation, re-
spectively, and the data for some simple examples are described. Sec-
tions 3.1-3.4 then show the results for the examples. The results and the
intended use of the toolbox are discussed in section 4.

2. Methods

2.1. Description of the MCRA toolbox

The toolbox for mixture risk assessment has been built according to
the modular design shown in Fig. 1. The modules are listed in Appendix
A1. Modules are of three basic types: 1. Scoping modules regarding
primary entities on which the risk assessment is built; 2. Data modules,
specifying groups of data sources needed or optional for the assessment;
and 3. Calculator modules, which calculate results of a certain type.
Note, that calculator modules can in principle also act as data modules
if the results are already available from previous work.

The primary entities in the toolbox relate to the agents of risk
(Substances), the sources of dietary exposure (Foods), the objects of
protection (Populations), the potential hazards (Effects), and how these
are measured (Responses in Test systems). The data and calculation
modules on the left side of Fig. 1 are related to exposure assessment,

those on the right side to hazard identification and hazard character-
isation. The module for risk assessment is in the middle of the diagram,
integrating exposures and hazard characterisations.

The exposures module can aggregate non-dietary exposures (which
then need to be provided as data) and dietary exposures. Dietary ex-
posures are calculated from consumptions and concentrations, possibly
incorporating many detailed aspects. Food consumptions may need to
be redefined by conversion of food codes from the codes used in con-
sumption surveys to the codes used in concentration monitoring data.
Occurrence data (concentrations and substance authorisations) may
need to be converted due to differences between active substances and
measured substances (in the pesticide field known as complex residue
definitions), and such data may be condensed in concentration models
(e.g. a lognormal distribution with a spike of non-detects). Total diet
study (TDS) concentration data require a conversion to appropriate
food codes. Exposures may also be adjusted for food processing effects
and for the greater concentration variability in units of consumption
compared to the composite samples used in the monitoring program. In
addition, modelled exposures may be inspected for co-occurrence of
substance combinations as exposure mixtures, and they may be com-
pared to human monitoring data.

Hazard identification is concerned with identifying the active sub-
stances related to a given health effect. AOP networks may be used to
identify relevant effects connected to the adverse outcome of interest in
the assessment. Identification of active substances as belonging to the
relevant AG may be just specified as data, or it may be derived from
available toxicity data or from in silico models (QSAR and/or molecular
docking). Effect representations data will link observed responses to
effects of interest and may specify benchmark responses, which are
toxicologically relevant levels for those responses, to be used in the
modelling of dose-response data to obtain benchmark doses (BMDs).
BMDs as well as other points of departure (POD) specified as data can
then be used for hazard characterisation, either directly or after ap-
plying assessment factors for POD type, species differences and/or
within-species variability. Kinetic models (or simple absorption factors)
may be use to extrapolate between external and internal doses. We use
the term hazard characterisation (HC) as a generic term which can be
any form of POD or health-based guidance value, depending on the
purpose of the analysis. For the assessment of mixtures, RPFs are cal-
culated as the ratio of HC for an index substance to HC for a specific
substance.

The toolbox distinguishes between two types of runs: the nominal
run and the uncertainty analysis loop. The nominal run represents a
single calculation in which the aim is to compute the most likely, if
possible unbiased estimates for the model at hand. E.g., when com-
puting dietary exposure distributions, the nominal run computes one
exposure distribution, using, as much as possible, fixed values for all
uncertain inputs, and summarises the exposure distribution by point
estimates of statistics such as the mean exposure or specific percentiles
of variability. In the uncertainty analysis, on the other hand, the cal-
culation run is repeated a number of times, each time with a different
uncertainty scenario obtained using bootstrapping, parametric resam-
pling, and/or re-calculation of uncertain values, yielding uncertainty
distributions and confidence intervals for specific outputs. Making the
distinction between the nominal run and the uncertainty loops has the
practical advantage that it allows the user to setup and evaluate com-
plex simulations first using only the nominal runs to quickly obtain a
picture of the results and identify possible errors in the data or in the
model settings before running the more time-consuming uncertainty
analysis loop.

User work is organized in workspaces. A workspace is a collection of
work items that are logically grouped together. A workspace has a
name, description and, optionally, a number of tags. Users are the
owners of their own workspace folders. An action is started with the
module of the corresponding action type (e.g. dietary exposures), but
also links to other modules that are needed for its completion (e.g.
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consumptions per food as measured, consumptions, foods, etc.). An
action can be available in two forms: 1) a data selection action and 2) a
calculation action. A data selection action comprises the selection of
already available data of that action type, optionally the specification of
selections on that data, and in some cases some pre-processing of data.
A calculation action is an action in which the data of that action is
calculated based on relevant input and specific calculator settings.
Within a workspace, multiple actions can be created. When running an
action, a task is spawned that produces output. Output is available in
the form of reports or in the form of data that can be used as input in
other actions. Actions have multiple outputs when settings are changed.
Output reports are presented as screen reports or print reports and
structured according to the modules of the modular design.

2.2. Data – example data organised in the EuroMix project

The toolbox contains a repository for relevant data. Data can be
uploaded by individual users or by representatives of a larger user
group. Data can be shared with other users or user groups. The data
administrator for each data set can decide on use, read, or read/write
permission for users. The data collected during the EuroMix project
(Data/EuroMix repository) are shared with project participants and
other stakeholders and are summarised in Table 1. These data collected
in the EuroMix project were the basis for the examples shown below.

2.3. Hazard identification: AOP-based assessment groups, probabilistic
memberships from in silico data or expert elicitation

2.3.1. Implemented methods for hazard identification
In the context of mixture risk assessment, hazard identification in-

cludes the task of identifying and grouping substances that may lead to
a specified adverse outcome (AO) considered in a risk assessment. The
set of such substances together form the AG for the AO. The toolbox
offers various methods to establish AGs. In this work we will focus on
some of these methods The Active substances module of the toolbox
includes several possibilities for defining AGs. First, the substances
belonging to an assessment group related to a given AO can be directly
specified. Secondly, only the substances for which POD data are
available can be selected. Thirdly, substances can be selected based on
predictions for the given AO from QSAR or molecular docking models
(Cotterill et al., 2016; Rorije et al., 2019). Under the first and third
options, missing PODs can be imputed (Kennedy et al., subm.).

In probabilistic modelling, substances can also be identified with a
membership probability for the assessment group. Membership prob-
ability can be derived from expert knowledge elicitation, as in recent
EFSA reports (EFSA et al., 2019a,b), and entered as data in the toolbox.
Probabilities can also be based on the fraction of positive QSAR or
molecular docking models, either as a simple ratio estimate or using a
Bayesian calculation that includes the sensitivity and specificity of the
QSAR models when available (Kennedy et al., subm.).

Fig. 1. Modular design of the MCRA toolbox. Not all links are shown in this graph. See Appendix A1 for a complete list.
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2.3.2. Example
The EuroMix inventory list of 573 pesticides (Kyriakopoulou et al.,

2017) was analysed for possible hazard with respect to the adverse
outcome steatosis. From data available at EFSA, steatosis-specific PODs
were available for a minority of pesticides. Additional indications for
steatotic activity were derived from in silico models such as QSAR
model predictions and molecular docking binding energies (Cotterill
et al., 2016; Rorije et al., 2019). An AOP network for steatosis (Vinken,
2015; Mellor et al., 2016) was assessed (Luckert et al., 2018) and has
been graphically outlined (Fig. 2). This network was uploaded to the
toolbox in the form of relational tables specifying all effects and effect
relations. Based on this data, several options for non-probabilistic
(crisp) or probabilistic AG membership assessments that are available
in the toolbox will be illustrated.

2.4. Hazard characterisation: dose response modelling, calculation of RPFs,
use of kinetic models for IVIVE

2.4.1. Implemented methods for hazard characterisation
For hazard characterisation in the context of mixture risk assess-

ment the RPF calculations are based on POD values for the substances.
The POD value can be a BMD from benchmark dose modelling or a No
Observed Adverse Effect Level (NOAEL) or Lowest Observed Adverse
Effect Level (LOAEL). Health-based guidance values, such as Acceptable
daily Intake (ADI) or Acute Reference Dose (ARfD) can also be used
instead of POD, i.e. the POD divided by the assessment factors, which
should be taken into consideration for comparison to exposure. Because
of the many variations possible, the value used for the RPF calculation
is generically called HC in this paper and in the toolbox.

Well-known softwares for benchmark dose (BMD) modelling of dose
response data are BMDS (http://www.epa.gov/bmds) and PROAST
(http://www.rivm.nl/en/proast) (EFSA, 2017). In module Dose response
models of the toolbox, dose response data organised in the data re-
pository can be fitted using the various dose response models (Slob,
2002; Slob and Setzer, 2014; EFSA, 2017), either using an internalised
version of the PROAST software or using the web-based PROAST ver-
sion (https://proastweb.rivm.nl). In the toolbox connections can be
specified between effects, e.g. the adverse outcome or related biological

effects, and responses, which are the measured quantities, in vivo or in
vitro, that are available for BMD modelling. For example, it was pro-
posed to consider the AdipoRed response after 72 h in a HepaRG test
system as one of the most appropriate and cost-effective responses in
relation to the AO steatosis (Lichtenstein et al., 2019). Part of these
Effect representations is the specification of an appropriate benchmark
response (BMR), i.e. the response level considered suitable for the BMD
modelling, often as a limit value for adversity (EFSA, 2017).

Whereas dose response models focus on BMD calculation related to
specific responses, further or alternative steps may be needed to obtain
an appropriate HC. In the Hazard characterisations module, many pos-
sibilities are provided to define HCs either as deterministic threshold
values, such as NOAEL, ADI or ARfD, or as distributions generated from
probabilistic models. HCs can be calculated for acute or chronic risk
types, and for different target levels of the human body (external via
some route of exposure or internal for a specific defined organ or
compartment). It may be needed to align the available information to
the desired target level by including assessment factors for inter-species
differences, intra-species variation, different expression types (e.g. BMD
or NOAEL or LOAEL) and the difference between external and internal
exposure. The latter conversion is especially relevant when in vitro dose
response data are to be used for a HC that should be compared with
external, e.g. dietary, exposure data. In general this type of modelling is
known as in vitro to in vivo extrapolation (IVIVE). In this approach, we
need human physiologically based toxicokinetic (PBTK) models. Within
EuroMix, the Cosmos model was integrated in the toolbox as a general
PBTK applicable model (Bois et al., 2019; Tebby et al., 2019).

The conceptual model used for the use of in vitro and/or in vivo
animal study data for human hazard characterisation and risk assess-
ment using IVIVE is shown in Fig. 3. A typical situation is that there are
many substances in a proposed AG, which could be measured all in vitro
but not in vivo. The in vitro dose response relations are assumed to co-
incide with in vivo relations between internal dose and some early
biological response. The in vitro data can then be used to derive internal
RPFs, i.e. at the tissue or cell level. Then kinetic models (or absorption
factors which are considered a lower tier of kinetic model) can be used
to adjust external PODs. i.e. expressed as external exposure levels, to
internal HCs, or alternatively to translate internal RPFs to external

Table 1
Data in the toolbox, as collected in the EuroMix project. For specific data regarding modules that were not in the focus of the EuroMix project and therefore not
included in this table, references are van Klaveren et al. (2019 ab) for Unit variability factors, Substance authorisations, Substance conversions, Concentration limits
and Food extrapolations, Kolbaum et al. (2019) for TDS sample compositions, van der Voet et al. (2009) for Intra-species factors and Inter-species factors.

Module Description data sets

Foods 2289 foods-as-eaten and foods-as-measured coded in FoodEx1 (EFSA, 2011)
32 processing types

Substances 1629 substances, classified in categories PPPs, Biocides, Alkaloids, EnvironmentalPollutants, FoodAdditives, Mycotoxins (Kyriakopoulou et al.,
2017)

Effects
AOP networks

48 effects in 7 AOP networks related to liver steatosis, reproductive toxicity and craniofacial malformations

Populations 15 population groups from 10 countries (different age groups) (Crépet et al., 2019a)
Test systems

Responses
Effect representations

14 test systems, 477 responses, 162 effect representations (Luckert et al., 2019; Schreiber et al., 2019ab)

Consumptions 11 files with food consumption data in 10 countries (Crépet et al., 2019a)
Food recipes 5555 records specifying food ingredients in the FoodEx1 system or conversions (Boon et al., 2015)
Concentrations Food monitoring data 2010–2014, SSD formatted data (Crépet et al., 2019a)
Processing factors 667 processing factors for pesticides and environmental pollutants (derived from Verarbeitungsfaktoren_3-0.xls, downloaded 01-09-2015 from

https://www.bfr.bund.de/de/a-z_index/verarbeitungsfaktoren-8400.html)
Non-dietary exposures Simulated non-dietary exposures from Browse and Bream2 (Kennedy et al., 2019)
Human monitoring data Norwegian biomonitoring study (Husøy et al., 2019)
QSAR membership models 26 QSAR models applied to all substances in the EuroMix chemical inventory (Rorije et al., 2019)
Molecular docking models 20 Molecular docking models applied to all substances in the inventory (Rorije et al., 2019)
Kinetic models EuroMix Generic PBTK model parametrised for 9 substances based on httk and for all substances in the inventory based on QSAR (Tebby et al.,

2019)
Points of departure 144 NOAEL or LOAEL values related to Steatosis-liver (Crépet et al., 2019a)
Dose response data 28 files describing experiments with single substances or mixtures, on 15 responses (or groups) in 9 test systems in 6 laboratories (Luckert et al.,

2019; Schreiber et al., 2019ab)
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Fig. 2. Adverse Outcome Pathway (AOP) network for the adverse outcome (AO) liver steatosis. The ovals are molecular initiating events (MIEs) and the boxes are
other key events (KEs). The arrows depict key event relationships (KERs). The numbers in the ovals/boxes refer to KE numbers in the AOP wiki (https://aopwiki.org).
* refers to KEs not included in the AOP wiki but described in Mellor et al. (2016). ** refers to KEs not included in the AOP wiki but described in Vinken (2015).

Fig. 3. Overview of in vitro to in vivo extrapolation (IVIVE) model components. cum = cumulative; index = index substance; ani = animal, hum - human. Classes of
substances: A: substances with in vitro and in vivo data, B: substances with only in vitro data.
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RPFs.
In mixture risk assessments, RPFs are calculated by dividing the HC

of a chosen index substance by the HC of each specific substance. This
implies that RPFs may, and typically will be different depending on
whether an external exposure or an internal exposure, e.g. at the target
tissue or cell level, was used. In the module Relative potency factors both
types can be calculated, and modelled uncertainties in the values used
to derive the RPFs (e.g. from BMD modelling) are translated to un-
certainties about RPFs. It may further be noted that RPFs represent the
distance between parallel dose response curves, and can even be cal-
culated when no BMR has been specified in the dose response model-
ling.

In the toolbox, external doses from animal studies can be adapted to
external doses for humans by the use of inter-species and/or intra-
species factors. Alternatively, no inter-species and intra-species factors
are used, and then the final margin of exposure will have to be con-
sidered against an appropriate value representing the combined as-
sessment factors, e.g. 100. We use the latter approach in this paper.

2.4.2. Examples
As a first example, hazard characterisations and RPFs were calcu-

lated based on the NOAELs or LOAELs available for 144 substances
related to the AO steatosis, using the well-studied risk driver imazalil as
an index substance. Standard inter-species and intra-species assessment
factors of 10 were used for all hazard characterisations. As in Crépet
et al. 2019a,b, for 13 substances where no NOAEL was available, the
LOAEL was divided by 3 to obtain an estimated NOAEL. This is a simple
approach, and further refinement may be necessary in real applications.
The guidance document from WHO/IPCS (2018) states that it would be
much better to use dose-response data. In the current project, it was not
possible to use the dose-response data for all 144 substances.

In the EuroMix project three chemicals were prioritised in relation
to the AO steatosis: imazalil, thiacloprid and clothianidin based on re-
levance from dietary exposure and other considerations (Crépet et al.,
2019a, Lichtenstein et al., subm.). We therefore provide more detailed
example calculations based on in vitro dose response data for these
chemicals.

Dose response relations for the intracellular lipid accumulation after
72 h were measured using the AdipoRed assay in the in vitro HepaRG
test system for three substances in the steatosis AG (Luckert et al.,
2019). Using the Proast model (https://www.rivm.nl/en/proast; Slob
and Setzer, 2014), that is integrated in the MCRA toolbox, a 6-para-
meter parallel-curve exponential dose response model was fitted to the
data. Three parameters represent the lower and upper asymptote and
common slope, one parameter is the BMD for the index substance (here
imazalil), and the remaining two parameters represent the RPFs for the
other two substances relative to the index substance. A 10% increase in
AdipoRed response was assumed to be an appropriate benchmark re-
sponse (BMR) level. The appropriateness of the parallel-curve model
was checked by superimposing the shifted dose response curves and the
data (Kienhuis et al., 2015). The RPFs are based on in vitro doses in
molar units. For reverse dosimetry we changed to mass units and mass-
based RPFs.

Using the EuroMix Generic PBTK model that is integrated in the
toolbox (Bois et al., 2019; Tebby et al., 2019) the internal liver con-
centration was simulated when a daily dose equal to the BMD is given.
In the EuroMix project different parameterisations of the model for
each substance have been investigated (Tebby et al., 2019). Here, we
rely on kinetic parameters estimated by QSAR but with hepatic clear-
ance values obtained from in vitro clearance measurements. The long-
term exposure relevant for chronic risks was obtained by averaging
over predicted liver concentrations in the period between 15 and 28
days. The ratio of this internal concentration to the external exposure
per unit bodyweight was then used as the absorption factor. For all
routes, the exposure is taken to be the total amount entering via that
route per unit bodyweight and per day.

2.5. Exposure assessment: dietary exposure with large AG, aggregating
dietary and non-dietary exposures, comparison with human monitoring

2.5.1. Implemented methods for exposure assessment
The module Dietary exposures of the toolbox implements the

methods of the EFSA guidance on probabilistic modelling (EFSA, 2012)
as well as the most recent EFSA methodology for cumulative dietary
exposure assessment for acute and chronic risks of pesticides (van
Klaveren et al., 2019a; EFSA et al., 2019a,b). Using the module Food
conversions consumptions of food-as-eaten as specified in a dietary
consumption survey can be recoded in terms of the foods-as-measured.
In this paper concentration data according to EFSA's standard sample
description (SSD1) (EFSA, 2010) were used with FoodEx1 food classi-
fication (EFSA, 2011). The toolbox however has no fixed coding sys-
tems, and could equally well use the newer SSD2 system (EFSA, 2013b)
provided a table with code conversions for the foods-as-eaten is avail-
able.

The module Dietary exposures also implements advanced methods
for long-term exposure commonly used in nutrition science, such as the
logistic-normal normal (LNN) model for episodical intakes (Goedhart
et al., 2012; Roodenburg et al., 2013; Boon et al., 2014; van der Voet
et al., 2015).

In the module Exposures dietary (external) exposures can be trans-
lated to internal exposures, using simple absorption factors or in-
tegrated kinetic models. Non-dietary exposures from e.g. dermal or
inhalatory routes can be aggregated with the dietary exposures
(Kennedy et al., 2019; Karrer et al., 2019; Vanacker et al., in prep.).
There can be multiple instances of a kinetic model (e.g. the human
model for imazalil or the rat model for clothianidin). The parameters of
each instance can be specified as fixed values or as variable and un-
certain quantities. Distributions for variability and uncertainty are
characterised by their type (log-normal, logistic-normal) and coefficient
of variation.

Modelled exposures in given body compartments, e.g. blood or
urine, can be compared to actually measured exposures from human
(bio-)monitoring studies in the module Human monitoring analysis.

Dose-additivity is a common assumption in mixture risk assessment
(EFSA, 2013a, 2019; OECD, 2018). With large number of substances
that have the same health effect it is practically impossible to check this
assumption for all combinations. It is then important to identify the
main groups of substances that contribute to the cumulative exposure.
The module Exposure mixtures implements a multivariate method,
sparse nonnegative matrix underestimation (SNMU), to find such
groups (Crépet et al., 2019a).

Uncertainty about assessment group membership for substances can
be addressed probabilistically as sketched in section 2.3.1. In the
toolbox, such probabilities can be used in an exposure assessment to
include or exclude substances in the multiple loops of an uncertainty
calculation (see also EFSA, 2019a,b), as described in Kennedy et al.
(subm.).

2.5.2. Examples
An example is given of dietary exposure from 144 pesticides with a

POD (NOAEL or LOAEL) for steatosis (Kyriakopoulou et al., 2017).
Consumption data were available for a Dutch population of children
(1–19 years) (van Rossum et al., 2011). These were combined with
merged European food control and monitoring data 2010–2014 (Crépet
et al., 2019a) using a previously established database of food conver-
sions (Boon et al., 2015) and BfR processing factors (https://www.bfr.
bund.de/de/a-z_index/verarbeitungsfaktoren-8400.html, downloaded
01-09-2015). As reported in section 3.2, the PODs were used to calcu-
late external RPFs. For the handling of left-censored data (concentra-
tions reported to be below a limit of reporting) the EC-EFSA method
based on observed occurrence patterns was applied (van Klaveren et al.,
2019ab), thus avoiding the extreme conservatism of the EFSA basic
pessimistic model. Exposure percentiles for the basic observed
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individual means (OIM) method and the LNN method are compared,
and the most important food-substance combinations (risk drivers) are
identified.

In a second example, dietary exposures were combined with non-
dietary exposures for the three prioritised steatotic substances imazalil,
thiacloprid and clothianidin. The dietary exposures were based on
consumption data of French adults (Dubuisson et al., 2010) and the
same other dietary exposure data as mentioned above. The non-dietary
exposures were estimates for adult residents from the Browse model
(Kennedy et al., 2019). Internal RPFs for steatosis were based on in vitro
data from AdipoRed assays (Luckert et al., 2019). For linking external
to internal level exposures, the EuroMix Generic PBTK was used, with
parameterisations for the human including variability of the parameters
(Tebby et al., 2019).

In a third example, the module Human monitoring analysis was used
to combine questionnaire data on food consumption and personal care
product use with monitoring data on bisphenol A (BPA) in food, and
compare the resulting predicted exposures with measured urine levels.
Human biomonitoring data for BPA were available from a Norwegian
survey which measured bisphenols in urine and asked participants for
their diet and their use of personal care products (Husøy et al., 2019).
Predicted exposures were based on the recorded consumptions and
personal care product use in combination with measured or modelled
BPA levels (Karrer et al., 2019) using a kinetic model developed for this
purpose and integrated in the toolbox (Karrer et al., 2018).

2.6. Risk characterisation: comparing exposure and hazard characterisation
distributions

2.6.1. Implemented methods for risk characterisation
Risk characterisation is fundamentally the process of comparing

exposure to hazard. Both exposure levels and hazard threshold levels
(called HCs in the toolbox) can be variable (between individuals or
individual-days) and/or uncertain. The toolbox module Risks can be
used to display this comparison. More directly, the ratio of HC to ex-
posure, i.e. the margin of exposure (MOE) is calculated and displayed.
For mixture exposure, this has also been termed the MOE total (MOET)
or combined MOE (e.g. Rotter et al., 2018; EFSA, 2019), but in the
toolbox the term MOE is used throughout, for both single-substance and
cumulative cases. For example, in a traditional risk assessment human
exposures are often compared to a POD derived from an animal study.
The product of assessment factors, e.g. 100 resulting from a factor 10
each for inter-species and intra-species differences, may then be used as
a threshold for the MOE specified by the user.

In a more advanced calculation such as in the integrated probabil-
istic risk assessment (IPRA) approach (van der Voet and Slob, 2007; van
der Voet et al., 2009), the assessment factors (as well as their variability
and uncertainty) are internalised in the probabilistic hazard char-
acterisation and modelled probabilistically. Probabilistic hazard and
exposure estimates are then compared and the MOE compares

individual human exposures to individual human HCs. Note that for
this case this ratio has previously been termed the individual MOE
(IMOE), but in the toolbox the term MOE is used generically, whether
the HC includes the assessment factors or not. For practical risk as-
sessment, the distribution of MOE (based on probabilistic exposure or
probabilistic hazard or both) can be characterised with a lower per-
centile of interest, e.g. P1, or with the lower confidence limit on such a
lower percentile. For an example of this fully probabilistic approach see
Jacobs et al. (2015).

Uncertainty about assessment group membership for substances can
be addressed probabilistically as sketched in section 2.3.1. In the
toolbox, such probabilities can be used in a risk assessment to include or
exclude substances in the multiple loops of an uncertainty calculation
(see also EFSA et al., 2019a, b), as described in Kennedy et al. (subm.).

2.6.2. Example
A mixture risk assessment for Dutch children was performed for the

group of 144 pesticides with a POD for steatosis (Kyriakopoulou et al.,
2017), calculating MOE values based on Dutch consumption data (van
Rossum et al., 2011) and European monitoring data (Crépet et al.,
2019a,b) and using a user-specified MOE threshold value of 100.

3. Results

3.1. Hazard identification: assessment groups, probabilistic memberships
from in silico data

Running the Active substances module for the 573 pesticides listed in
the EuroMix Chemical Inventory, 144 substances (25%) were found to
belong to the AG for steatosis based on available PODs for steatosis. The
remaining 429 pesticides (75%) may or may not have steatosis as a non-
critical effect, but it was not recorded in the dossiers. Therefore QSAR
models may be useful to consider possible AG membership. We first
illustrate non-probabilistic (crisp) options for membership assignment.
From a larger collection of 29 available QSAR models collected in the
EuroMix data, the five QSAR models that relate to the AOP network for
steatosis were automatically identified (Table 2). Note that three of
these models directly relate to the adverse outcome, whereas the re-
maining two relate to other effects (molecular initiating events or key
events) that occur upstream in the AOP network. Using the toolbox it
was calculated how many substances would belong to the AG for
steatosis. This was based on the optimised FERA model, on all three
available steatosis models, or on all five models related to the steatosis
AOP network (Table 3). Pesticides for which no QSAR results could be
calculated were omitted or added to the AG. Depending on the QSAR
models chosen and the treatment of the substances without a QSAR
prediction, the number of pesticides with an QSAR indication of a
possible effect was between 250 and 525 (see column QSAR-based in
Table 3), much higher therefore than the number for which a POD was
available (n = 144). In a second scenario, the QSAR results were only

Table 2
QSAR models related to the adverse outcome steatosis. Note that some of the 573 substances could be analysed with the QSAR models.

Model Model description Effect Number of substances
with QSAR results

Fraction of these
substances classified in AG

1 COSMOS Nuclear Receptor model for Steatosis
liver nuclear receptors used to predict
hepatotoxicity - and to predict steatosis

Steatosis-liver 513 0.60

2 at least one of the 16 Liver NR Docking models
from Uni Milano above binding threshold energy

Steatosis-liver 513 0.84

3 FERA developed model using the reference dataset
for Steatosis - to predict steatosis

Steatosis-liver 513 0.49

4 OCHEM AhR receptor binding model used to
predict hepatotoxicity - and to predict steatosis

AhR-act-liver 512 0.40

5 OCHEM PPARg receptor binding model used to
predict hepatoxicity - and to predict steatosis

PPARgamma-act-liver 508 0.45
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used to reduce the set of 144 pesticides having a POD, by omitting all
substances without a QSAR prediction of steatosis. Instead of 144 pes-
ticides we then found between 83 and 135 pesticides in the AG. In a
third scenario, the QSAR-derived sets were expanded with those pes-
ticides for which a POD was available although no QSAR-signal was
obtained. This resulted in between 311 and 528 pesticides in the AG.

Considering the large uncertainty about steatosis AG membership,
an alternative approach is to estimate probabilities of membership, and
use these in the uncertainty analysis. Here, ratio-based membership
probabilities were derived (Fig. 4). In this analysis, a default probability
0.5 was used if QSAR classification was missing. 48 substances were
excluded from the AG (all QSAR classifications negative) and 68 sub-
stances were included with certainty (all QSAR classifications positive).
For the remaining 457 substances a membership probability equal to

the fraction of positive QSAR models was derived. A more advanced
Bayesian calculation is also available, and is described elsewhere
(Kennedy et al., subm.). These membership probabilities can be used in
probabilistic assessments by including each substance in iterated un-
certainty runs with the calculated probability as proposed by EFSA
(EFSA et al., 2019a, b), which method is also available in the toolbox.

3.2. Hazard characterisation: dose response modelling and relative potency
factors

The preparation of the NOAEL and LOAEL data of 144 pesticides
related to steatosis has been described in Crépet et al. (2019a). Hazard
characterisations varied between 0.25 μg/kg bw/day (ethoprophos)
and 20 mg/kg bw/day (metosulam). A complete overview is given in
the supplementary material, Appendix A2. Based on the hazard char-
acterisation of 40 μg/kg bw/day for the index substance imazalil, the
RPFs varied between 160 (ethoprophos) and 0.002 (metosulam). For
the three substances also used in the second example, the RPFs from in
vivo NOAELs were 1, 0.148 and 3.33 for imazalil, clothianidin and
thiacloprid, respectively.

For imazalil, clothianidin and thiacloprid, dose response relations
for the AdipoRed response after 72 h were measured in the in vitro
HepaRG test system. Using the integrated Proast model in the toolbox, a
6-parameter parallel-curve exponential dose response model was fitted
to the combined data of the three experiments, where three parameters
represent the lower and upper asymptote and common slope, one
parameter is the BMD for the index substance (here imazalil), and the
remaining two parameters represent the RPFs for the other two sub-
stances relative to the index substance. Fig. 5 and Table 4 show the
results. In Fig. 5b the doses for all three substances are expressed as
equivalents of the index substance, =d RPF deq .

On visual inspection the data show no major deviations from the
parallel curve model, but the variation around the fitted curve is large,

Table 3
Classification of pesticides by use of QSAR models related to the adverse outcome steatosis.

QSAR model(s)
(see Table 2)

rule for aggregation include in AG pesticides without QSAR
results

Number of pesticides in steatosis AG (% of 573 pesticides)

QSAR-based Restricted to POD present Expanded with POD present

3 (FERA model) – no 250 (44%) 83 (15%) 311 (54%)
yes 310 (54%) 96 (17%) 358 (62%)

1,2,3 (steatosis only) any no 445 (78%) 122 (21%) 467 (82%)
yes 505 (88%) 135 (24%) 514 (90%)

majority no 357 (62%) 111 (19%) 390 (68%)
yes 417 (73%) 124 (22%) 437 (76%)

1,2,3,4,5 (include AOP-linked effects) any no 465 (81%) 128 (22%) 481 (84%)
yes 525 (92%) 141 (25%) 528 (92%)

majority no 295 (52%) 90 (16%) 349 (61%)
yes 355 (62%) 103 (18%) 396 (69%)

0 0.2 0.4 0.6 0.8 1
Computed membership probability

0

50

100

fre
qu

en
cy

Assessment group memberships distribu!on

Fig. 4. Probabilistic memberships for 573 pesticides for the Steatosis AG based
on predictions from five QSAR models.

Fig. 5. Dose response model AdipoRed in HepaRG test system (a) Parallel curves fitted for three substances. (b) Doses for all substances expressed in equivalents of
the index substance Imazalil. BMDs for a BMR of 10% increase are shown.
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which translates to wide confidence intervals for BMDs and RPFs. For
example, the RPF for thiacloprid is 0.16, but is uncertain by almost a
factor 3 from the 95% confidence interval (0.09, 0.26).

Using the EuroMix Generic PBTK model the internal liver con-
centration when a daily dose equal to the BMD is given was simulated
and averaged over the period between 15 and 28 days to estimate the
pseudo-steady-state concentration (Fig. 6). The ratio of this internal
concentration to the external exposure was then used as the absorption
factor to convert internal to external RPFs (Table 4, Fig. 7). Note that
for a given dose imazalil has the highest concentration in the liver

(higher absorption factor). Consequently, the external RPFs for clo-
thianidin and thiacloprid are much lower than the internal RPFs.

3.3. Exposure assessment: risk drivers, aggregating dietary and non-dietary
exposure, comparison with human monitoring

3.3.1. Cumulative dietary exposure and risk drivers for steatosis
Following the traditional approach, the cumulative dietary exposure

of Dutch children (1–19 years) to steatosis-related pesticides was cal-
culated at the external level, using external RPFs for dose addition. In
Fig. 8 we show an example of cumulative exposure assessment based on

Table 4
Benchmark doses (BMD, in μM) with lower (P5) and upper (P95) bounds (BMDL, BMDU), calculated from a parallel-curve exponential model to the AdipoRed dose
response data, and internal and external RPFs (with bootstrap-based 90% confidence intervals).

Substance BMD in vitro (μM) RPF internal (mol based) Molecular mass RPF internal (mass based) Absorption factor from kinetic model RPF external (mass based)

Clothianidin 309 (160–595) 0.023 (0.015–0.037) 249.68 0.027 (0.018–0.042) 0.013 0.00038 (0.00025–0.00058)
Imazalil 7.1 (3.18–11.8) 1 297.18 1 0.91 1
Thiacloprid 44.4 (23–85.5) 0.16 (0.09–0.26) 252.73 0.19 (0.12–0.35) 0.32 0.066 (0.041–0.14)

Fig. 6. EuroMix Generic PBTK model and
example of use to derive internal to dietary
(oral) external ratio (imazalil, human
model), based on one dose per day leading
to an internal concentration equal to the in
vitro BMD (zero dermal and inhalatory ex-
posures are assumed). The horizontal line
indicates the mean internal exposure in the
selected interval between 14 and 28 days.

Fig. 7. External, mass-based relative potency factors calculated from in vitro
BMDs, with 90% confidence intervals based on BMD uncertainties. Index sub-
stance imazalil.

Fig. 8. a) Exposure (μg/kgBW/day imazalil equivalents) Dutch population from 144 steatosis-related pesticides using NOAEL- or LOAEL-based dose addition, and
OIM method. b) risk drivers in the upper 2.5% of the distribution.

Table 5
Chronic exposure percentiles using two methods: observed individual means
(OIM) and model-assisted logistic-normal normal (LNN) estimates, median and
90% confidence limits.

Percentage Cumulative exposure (μg/kg bw/day, as imazalil) OIM/LNN

OIM LNN

50 1.42 (1.20–1.68) 1.74 (1.46–2.05) 0.82
90 4.51 (4.00–5.06) 4.26 (3.77–4.92) 1.06
95 5.86 (5.26–6.71) 5.37 (4.77–6.27) 1.09
99 9.32 (8.36–10.4) 7.88 (7.02–8.86) 1.18
99.9 15.1 (12.3–17.0) 10.7 (9.64–12.6) 1.42
99.99 19.0 (15.5–22.2) 12.6 (11.3–14.2) 1.51
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NOAEL- or LOAEL-based RPFs for the 144 of 573 pesticides that were
related to steatosis according to the POD data (see 3.2 and Appendix
A2). It can be seen that imazalil in citrus fruits are main risk drivers,
where it can be noted that processing factors for the peeling and/or
juicing of citrus fruits were missing and therefore suggest a possibly
useful refinement of the model. For further details see Crépet et al.
(2019b).

Comparing different models for long-term exposure, the model-as-
sisted estimates of the LNN model were found to be lower than the OIM

estimates in the upper tail (Table 5), which confirms that the OIM
method underestimates the median, but overestimates the upper tail
percentiles (Dodd et al., 2006; Goedhart et al., 2012).

3.3.2. Aggregated cumulative exposure using a kinetic model
With dietary and non-dietary exposures, it is essential to aggregate

at the internal level. Consequently, internal RPFs are needed for dose
addition. In a simple approach standard absorption factors can be used,
e.g. 1 for dietary or inhalation exposure and 0.1 for dermal exposure.
See Kennedy et al. (2019) for such an application. Here we illustrate the
use of kinetic models in an example with just three substances. In this
example the EuroMix Generic PBTK model was used to translate
dietary, dermal and inhalation exposures to internal exposure in the
liver. Further, for each individual the external exposures on each of the
365 days of the simulation were randomly selected from the seven daily
imazalil exposures that were calculated for the seven days of this in-
dividual in the French consumption survey. In separate runs for dietary,
dermal and inhalation external exposure, the mean absorption factors
to the liver were estimated as (0.91, 0.96, 0.92) for imazalil, (0.35,
0.34, 0.32) for thiacloprid and (0.017, 0.019, 0.013) for clothianidin.
Fig. 9 shows simulated kinetic curves for the amount of imazalil in the
liver for the nine individuals in the French consumption survey that had
aggregated cumulative exposures closest to the 97.5th percentile of the
distribution. It can be seen that very variable kinetic curves were ob-
tained, and that for some individuals the pseudo steady state is not yet
reached after half a year. This is due partly to differences in dietary
exposures and partly to the assumed variability of kinetic model

Fig. 9. Simulated kinetics of imazalil for 9 individuals in the French population around the 97.5th percentile of exposure in the cumulative exposure distribution.
Note the random draws from the seven survey days for the external doses.

Fig. 10. Internal vs. external exposure.
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parameters. The high variability in absorption is also evident from the
plot of internal vs. external exposure (Fig. 10).

Using estimates that respectively 10.3%, 0.9%, 0.8% and 0.1% of
the population lives near agricultural fields where wheat, potatoes,
sugar beet or dessert apples are sprayed, we observe that for those
people thiacloprid and imazalil via the dermal route had the largest
contribution in their non-dietary exposure (Fig. 11a). This is in ac-
cordance with the results based on fixed absorption factors in Kennedy
et al. (2019). However, in the total exposure of the total adult popu-
lation the non-dietary contributions were minor. Imazalil from dietary
exposure had by far the largest contribution in this example (Fig. 11b).

3.3.3. Comparison of modelled exposure with human biomonitoring data
Using the Human monitoring analysis module of the toolbox,

human biomonitoring data (BPA measured in urine on a single day)
from a Norwegian study (Husøy et al., 2019; Karrer et al., 2019) were
compared to chronic exposure predictions based on the dietary con-
sumptions and non-dietary uses of personal care products recorded for
the survey participants (Fig. 12). The results showed roughly compar-
able levels of BPA around 1–10 μg/kg body weight per day, but no
strong correlation.

3.4. Risk characterisation: comparing exposure and hazard characterisation
distributions

In an assessment of all 144 pesticides with a POD for steatosis, the
final risk assessment is shown in two different ways. First, the HCs,
which in this case were the NOAELs in or derived from the data re-
pository, were plotted against the exposure distributions for each of the

substances separately, and also cumulated (Fig. 13a). The variability
and uncertainty in the exposure also induce variability and uncertainty
of the MOE, as represented by the diagonal line sections. Background
colours have been applied to indicate possible areas of risk and safety.
Note that one line (in the red area) represents equality of exposure and
HC (POD), whereas the other line (in the yellow area) represents the
user-specified threshold value 100 for the interpretation of MOEs.

A more direct representation of the MOEs is given in Fig. 13b. In
both plots it is seen that the cumulative MOE is well above 100, the 5th
percentiles of the cumulative distribution is estimated as 649, with a
lower 95% confidence limit of 597. Imazalil stands out as the main risk
driver.

4. Discussion

This paper has described the modular structure of the MCRA model
and data toolbox developed in the EuroMix project. Simple examples
have been shown how the toolbox can be used for various aspects of the
risk assessment of chemical mixtures. It is stressed that this paper does
not intend to present extended case studies. All examples have been
given for illustration of the methodology only, and do not represent real
hazard, exposure or risk assessments. For example, more study is
needed regarding the large differences between the in vivo and in vitro
derived RPFs for clothianidin or thiacloprid relative to imazalil. In fact,
it is not the purpose of this paper to propose any specific methodology
as an optimal approach for specific case studies, but rather to emphasise
that a wide variety of both simple and more complex approaches with
varying degrees of conservatism can be explored and compared using
an appropriate model and data toolbox.

More possibilities are available in the toolbox than could be illu-
strated here. For example, the toolbox also contains functionality to use
molecular docking models for identifying AG membership (Cotterill
et al., 2016; Kennedy et al., subm.). Missing HCs can be imputed, e.g.
based on thresholds of toxicological concern (Munro et al., 1996;
Kennedy et al., subm.). More refined exposure models can be applied,
including the use of occurrence patterns for the imputation of left-
censored data and residue definitions for measured substances which
are only indirectly measuring the active substances (van Klaveren et al.,
2019a). The most relevant mixtures for which further refinement could
be important can be identified (Crépet et al., 2019a). Integrated prob-
abilistic risk assessments where the uncertainty factors are also mod-
elled probabilistically can be run (van der Voet and Slob, 2007; van der
Voet et al., 2009; Jacobs et al., 2015).

MCRA 9, developed as the EuroMix toolbox and presented in this
paper, is maintained after the EuroMix project at https://mcra.rivm.nl
and can be used in its current state. Users can upload their own data or
can access data which are shared by other platform users or user
groups. The possible links between the MCRA toolbox and the IPCHEM
platform of the European Commission for supporting the assessment of
chemical mixtures have been discussed (Dalla Costa et al., 2018) and
the European Commission, EFSA, industry and regulators were trained

Fig. 11. Contributions by route and substance to (a) the non-dietary cumulative exposure, (b) the total (dietary and non-dietary) cumulative exposure.

Fig. 12. Bisphenol-A measured in urine vs. predicted from dietary and non-
dietary exposures for 144 persons.
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in the use of MCRA (Bopp et al., 2018; Zilliacus et al., 2019b). The
toolbox will also be further developed in cooperation with EFSA and
other stakeholders such as national risk assessment institutes. Such
development might go in two opposite directions. On the one hand, the
use by less-experienced users can be optimised by offering clearly de-
scribed tiers including pre-sets of options, avoiding the need to specify
all settings by hand. On the other hand, the modular design of the
toolbox makes it suitable for developing interoperability with other
web-based databases and models, and for adding new functionalities. A
practical example would be to add the use of expert-elicited uncertainty
distributions to adjust the results of risk assessments (EFSA, 2019cd).
Another extension would be to include read-across approaches for ha-
zard assessment as have been recently proposed (Escher et al., 2019).

In conclusion, the MCRA model and data toolbox has been found
useful to perform case studies of hazard identification, hazard char-
acterisation, exposure assessment and risk characterisation, as shown in
this paper and in other deliverables in the EuroMix project (Crépet
et al., 2019a,b; Kennedy et al., 2019; Karrer et al., 2019; Kennedy et al.,
subm.; Vanacker et al., in prep.). At the same time, the toolbox has been
prepared to serve a wider public, and will be tested and further de-
veloped in future collaborations.
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