3,605 research outputs found

    Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model

    Get PDF
    Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction models and to validate the accuracy of code predictions. This project was a Feasibility Study under the LLNL Laboratory Directed Research and Development (LDRD) Program

    Bayesian Confidence Limits For The Reliability Of Mixed Cascade And Parallel Independent Exponential Subsystems

    Get PDF
    This paper deals with the theoretical problem of deriving Bayesian confidence intervals for the reliability of a system consisting of both cascade and parallel subsystems where each subsystem is independent and has an exponential failure probability density function (pdf). This approach is applicable when test data are available for each individual subsystem and not for the entire system. The Mellin integral transform is used to analyze the system in a step-by-step procedure until the posterior pdf of the system reliability is obtained. The posterior cumulative distribution function is then obtained in the usual manner by integrating the pdf, which serves the dual purpose of yielding system reliability confidence limits while at the same time providing a check on the accuracy of the derived pdf. A computer program has been written in FORTRAN IV to evaluate the confidence limits. An example is presented which uses the computer program. Copyright Β© 1974 by The Institute of Electrical and Electronics Engineers, Inc

    Black holes admitting a Freudenthal dual

    Full text link
    The quantised charges x of four dimensional stringy black holes may be assigned to elements of an integral Freudenthal triple system whose automorphism group is the corresponding U-duality and whose U-invariant quartic norm Delta(x) determines the lowest order entropy. Here we introduce a Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the requirement that \tilde{x} be integer restricts us to the subset of black holes for which Delta(x) is necessarily a perfect square. The issue of higher-order corrections remains open as some, but not all, of the discrete U-duality invariants are Freudenthal invariant. Similarly, the quantised charges A of five dimensional black holes and strings may be assigned to elements of an integral Jordan algebra, whose cubic norm N(A) determines the lowest order entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a perfect cube, for which A**=A and which leaves N(A) invariant. The two dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde

    Nonrelativistic Chern-Simons Vortices on the Torus

    Full text link
    A classification of all periodic self-dual static vortex solutions of the Jackiw-Pi model is given. Physically acceptable solutions of the Liouville equation are related to a class of functions which we term Omega-quasi-elliptic. This class includes, in particular, the elliptic functions and also contains a function previously investigated by Olesen. Some examples of solutions are studied numerically and we point out a peculiar phenomenon of lost vortex charge in the limit where the period lengths tend to infinity, that is, in the planar limit.Comment: 25 pages, 2+3 figures; improved exposition, corrected typos, added one referenc

    Mendelian and Non-Mendelian Regulation of Gene Expression in Maize

    Get PDF
    Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B73Γ—Mo17 recombinant inbred line population. RNA-based sequencing (RNA-seq) allowed for the detection and quantification of the transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci (eQTL) mapping identified 30,774 eQTL including 96 trans-eQTL "hotspots," each of which regulates the expression of a large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore, we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression patterns and broaden the understanding of transcriptional variation in plants. Β© 2013 Lin et al

    Thermodynamic properties and structural stability of thorium dioxide

    Full text link
    Using density functional theory (DFT) calculations, we have systematically investigated the thermodynamic properties and structural stabilities of thorium dioxide (ThO2_2). Based on the calculated phonon dispersion curves, we calculate the thermal expansion coefficient, bulk modulus, and heat capacities at different temperatures for ThO2_2 under the quasi-harmonic approximation. All the results are in good agreement with corresponding experiments proving the validity of our methods. Our theoretical studies can help people more clearly understand the thermodynamic behaviors of ThO2_2 at different temperatures. In addition, we have also studied possible defect formations and diffusion behaviors of helium in ThO2_2, to discuss its structural stability. It is found that in intrinsic ThO2_2 without any Fermi energy shifts, the interstitial Thi4+_i^{4+} defect other than oxygen or thorium vacancies, interstitial oxygen, and any kinds of Frenkel pairs, is most probable to form with an energy release of 1.74 eV. However, after upshifting the Fermi energy, the formation of the other defects also becomes possible. For helium diffusion, we find that only through the thorium vacancy can it happen with the small energy barrier of 0.52 eV. Otherwise, helium atoms can hardly incorporate or diffuse in ThO2_2. Our results indicate that people should prevent upshifts of the Fermi energy of ThO2_2 to avoid the formation of thorium vacancies and so as to prevent helium caused damages.Comment: 11 pages, 11 figure

    Aharonov-Bohm cages in two-dimensional structures

    Full text link
    We present an extreme localization mechanism induced by a magnetic field for tight-binding electrons in two-dimensional structures. This spectacular phenomenon is investigated for a large class of tilings (periodic, quasiperiodic, or random). We are led to introduce the Aharonov-Bohm cages defined as the set of sites eventually visited by a wavepacket that can, for particular values of the magnetic flux, be bounded. We finally discuss the quantum dynamics which exhibits an original pulsating behaviour.Comment: 4 pages Latex, 3 eps figures, 1 ps figur
    • …
    corecore