The quantised charges x of four dimensional stringy black holes may be
assigned to elements of an integral Freudenthal triple system whose
automorphism group is the corresponding U-duality and whose U-invariant quartic
norm Delta(x) determines the lowest order entropy. Here we introduce a
Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although
distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the
requirement that \tilde{x} be integer restricts us to the subset of black holes
for which Delta(x) is necessarily a perfect square. The issue of higher-order
corrections remains open as some, but not all, of the discrete U-duality
invariants are Freudenthal invariant. Similarly, the quantised charges A of
five dimensional black holes and strings may be assigned to elements of an
integral Jordan algebra, whose cubic norm N(A) determines the lowest order
entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a
perfect cube, for which A**=A and which leaves N(A) invariant. The two
dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde