46 research outputs found

    Property Tax Lids and the Effect on Kansas

    Get PDF
    Cross sectional time series data in a partial adjustment model examine local government behavior under an aggregate property tax levy limit and under Truth in Taxation in Kansas. Results indicate that the aggregate levy limit would have continued to restrict property tax revenue and spending had it not been replaced.Public Economics,

    Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    Get PDF
    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms

    Oddification of the cohomology of type A Springer varieties

    Get PDF
    We identify the ring of odd symmetric functions introduced by Ellis and Khovanov as the space of skew polynomials fixed by a natural action of the Hecke algebra at q=-1. This allows us to define graded modules over the Hecke algebra at q=-1 that are `odd' analogs of the cohomology of type A Springer varieties. The graded module associated to the full flag variety corresponds to the quotient of the skew polynomial ring by the left ideal of nonconstant odd symmetric functions. The top degree component of the odd cohomology of Springer varieties is identified with the corresponding Specht module of the Hecke algebra at q=-1.Comment: 21 pages, 2 eps file

    Improving fairness in machine learning systems: What do industry practitioners need?

    Full text link
    The potential for machine learning (ML) systems to amplify social inequities and unfairness is receiving increasing popular and academic attention. A surge of recent work has focused on the development of algorithmic tools to assess and mitigate such unfairness. If these tools are to have a positive impact on industry practice, however, it is crucial that their design be informed by an understanding of real-world needs. Through 35 semi-structured interviews and an anonymous survey of 267 ML practitioners, we conduct the first systematic investigation of commercial product teams' challenges and needs for support in developing fairer ML systems. We identify areas of alignment and disconnect between the challenges faced by industry practitioners and solutions proposed in the fair ML research literature. Based on these findings, we highlight directions for future ML and HCI research that will better address industry practitioners' needs.Comment: To appear in the 2019 ACM CHI Conference on Human Factors in Computing Systems (CHI 2019

    Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets

    Get PDF
    Objectives: Crop improvement relies on analysis of phenotypic, genotypic, and environmental data. Given large, well-integrated, multi-year datasets, diverse queries can be made: Which lines perform best in hot, dry environments? Which alleles of specific genes are required for optimal performance in each environment? Such datasets also can be leveraged to predict cultivar performance, even in uncharacterized environments. The maize Genomes to Fields (G2F) Initiative is a multi-institutional organization of scientists working to generate and analyze such datasets from existing, publicly available inbred lines and hybrids. G2F’s genotype by environment project has released 2014 and 2015 datasets to the public, with 2016 and 2017 collected and soon to be made available. Data description: Datasets include DNA sequences; traditional phenotype descriptions, as well as detailed ear, cob, and kernel phenotypes quantified by image analysis; weather station measurements; and soil characterizations by site. Data are released as comma separated value spreadsheets accompanied by extensive README text descriptions. For genotypic and phenotypic data, both raw data and a version with outliers removed are reported. For weather data, two versions are reported: a full dataset calibrated against nearby National Weather Service sites and a second calibrated set with outliers and apparent artifacts removed

    Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins

    Get PDF
    Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale.This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)--quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)--frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)--duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)--emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)--inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems.Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new "hominiform" clade and suggests a homeotic origin for the human upright body plan

    Property Tax Lids and the Effect on Kansas

    No full text
    Cross sectional time series data in a partial adjustment model examine local government behavior under an aggregate property tax levy limit and under Truth in Taxation in Kansas. Results indicate that the aggregate levy limit would have continued to restrict property tax revenue and spending had it not been replaced
    corecore