356 research outputs found
Does the setting matter? Observing wheelchair transfers across different environmental conditions
The setting in which wheelchair transfers are performed can affect difficulty and the risks associated with completion. This article presents results from an observational study involving 13 wheelchair users performing independent transfers across four settings. The aim is to understand how the environment affects how different types of independent transfers are performed. Descriptive analysis was performed alongside an objective assessment using the Transfer Assessment Instrument (TAI). The perceived difficulty reported after each transfer was also collected. Two participants exhibited radically different transferring techniques in different scenarios. Additionally, the transferring scenario was found to significantly affect the perceived difficulty of sitting transfers (toilet 2.17 ± .88; bed 1.47 ± .65, p = .001; car 1.63 ± .82, p = .012) and standing transfers (car 3.5 ± .71; bed 1 ± 0, p = .03; toilet 1 ± 0, p = .03), and the TAI score attributed to sitting pivot with use of a transfer board (couch 4.3 ± .88; bed 6.93 ± 1.29, p = .022; car 7.13 ± 1.32, p = .018) . Overall, environmental constraints, can lead to major technique changes and, more often, to different positioning of hands and feet which could impact the transfer’s biomechanics
Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury
Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. © 2013 Solovyev et al
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
An Exploratory Analysis of the Role of Adipose Characteristics in Fulltime Wheelchair Users’ Pressure Injury History
Procedure to categorize wheelchair cushion performance using compliant buttock models
Purpose: Wheelchair cushion prescription often seeks to address tissue integrity in addition to other clinical indicators. Because hundreds of wheelchair cushion models are available, a benefit would result if cushions were classified in a more valid manner to help guide selection by clinicians and users. The objective of this research was to develop an approach to evaluate and classify wheelchair cushion performance with respect to pressure redistribution.
Materials and methods: Two anatomically-based buttock models were designed consisting of an elastomeric shell that models overall buttock form and a rigid substructure that abstracts load-bearing aspects of the skeleton. Model shapes were based upon elliptical and trigonometric equations, respectively. Two performance parameters were defined, pressure magnitude and pressure redistribution. The pressure magnitude parameter compared internal pressure values of the test cushion to a flat foam reference material, resulting in three classifications, superior, comparable, and inferior. Surface sensors were used to distinguish cushions with high, moderate or low pressure redistribution performance. Ten wheelchair cushions were evaluated by both models using two loads that represent a range of body weights expected for 41–43 cm wide cushions.
Results and Conclusion: A classification matrix is proposed using both models and performance parameters. Two cushions met criteria for the highest level of performance, and one cushion was deemed to have inadequate performance for therapeutic value. The proposed method has a sensitivity to discern differences, compatibility with different sized cushions, and a versatility in classification. As such, it stands as an improvement over existing classification approaches.This project was supported by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR Grant Number 90REGE0001-01-00) through a subcontract with the University of Pittsburg
- …
