330 research outputs found

    Immune Response and Immunolmodulation in Chronic Hepatiitis B Virus Infection

    Get PDF
    Despite the presence of an effective vaccine since 1982, chronic hepatitis B virus infection (CHB) still ranks among the highest causes of mortality from infectious diseases worldwide. The studies presented in this thesis were performed to get a better insight into the anti-viral immune response after hepatitis B virus (HBV) infection, and to identify factors in this immune response that contribute to persistent disease. Dendritic cells (DC) play an important role in the induction of anti- viral immune responses. In this thesis we show that two important blood precursor DC, myeloid DC and plasmacytoid DC, are functionally impaired in patients with chronic hepatitis B and this might be an important mechanism by which HBV evades an adequate immune response, leading to viral persistence and disease chronicity. Information about character and grade of the intrahepatic immune response in viral hepatitis is important for evaluation of disease stage and effect of therapy. Complications like haemorrhage provide a limitation to frequently performing standard tissue needle biopsies. The Fine-needle-aspiration-biopsy (FNAB) is an easy and atraumatic alternative and we show that flow cytometry of fine-needle-aspiration- biopsy of the liver allows reliable analysis of lymphocytes obtained from the intrahepatic compartment, in patients with viral hepatitis. Subsequently, the FNAB is used to show that there likely is an important role for intrahepatic HBV-specific CD8+ T-cells in clearing acute HBV infection. Furthermore, we have attempted to boost the impaired T-cell responses in patients with chronic HBV infection, using conventional anti-viral therapy. In in vivo immunization (IVI) of CHB patients, following rapid virus suppression by interferon-lamivudine combination therapy, lamivudine was withdrawn intermittently during continued interferon (IFNα) therapy. Although initially IVI was able to transiently suppress viral replication in two patients with CHB, in a subsequent pilot study the magnitude of the induced T-cell response was insufficient to cause a sustained virological effect in the majority of patients. It is unknown why treatment with IFNα leads to a response in only a minority of patients with chronic HBV. We show that in non-responders and not in responders there was a significant increase in the frequency of regulatory T cells (Treg) and IL-10 secreting cells during treatment with IFNα. Treg depletion resulted in increased proliferation capacity and increased frequencies of HBV-specific INFgamma-producing cells, but did not affect the frequency of IL-10 producing cells measured during the course of the treatment. This study indicates that there may be an important role for Treg in HBV- persistence during and after IFNα therapy

    Characterization of hemodialysis membranes by inverse size exclusion chromatography

    Get PDF
    Inverse size exclusion chromatography (i-SEC) was used to characterize three different cellulosic hollow fiber hemodialysis membranes, i.e. low-flux cuprophan and hemophan and high-flux RC-HP400A. With the i-SEC technique the pore size distribution and porosity of a membrane can be determined and adsorption phenomena can be studied. The membranes showed clear differences in pore size and porosity, the high-flux RC-HP400A membrane has a larger pore size as well as a higher porosity. For all the membranes it was found that the elution curves were best described by a homoporous pore volume distribution. It appeared that the bound or non-freezing water in the membranes was at least partly accessible to solutes. The test molecules creatinine and vitamin B 12 both adsorbed to the cellulosic membranes. The adsorption behavior of creatinine was strongly dependent on the NaCl concentration present. The observations could be explained by assuming that cuprophan and RC-HP400A are negatively charged whereas hemophan is positively charged due to the modification with N,N-diethylaminoethyl ether. The net charge of the hemophan is smaller

    Factors associated with ethnical disparity in overall survival for patients with hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is an important cause of cancer-related death worldwide. Ethnical disparity in overall survival has been demonstrated for HCC patients in the United States (U.S.). We aimed to evaluate the contributors to this survival disparity. The SEER database was used to identify HCC patients from 2004 to 2012. Kaplan-Meier curves and Cox proportional hazard models were used to evaluate overall survival by ethnicity and the contributors to ethnical survival disparity. A total of 33 062 patients were included: 15 986 Non-Hispanic Whites, 6535 Hispanic Whites, 4842 African Americans, and 5699 Asians. Compared to Non-Hispanic Whites, African Americans had worse survival (HR, 1.18; 95%CI, 1.14-1.23), while Asians had a better survival (HR, 0.85; 95%CI, 0.82-0.89), and Hispanic Whites had a similar survival (HR, 1.01; 95%CI, 0.97-1.05). Multivariate Cox analysis identified that tumor presentation- and treatment-related factors significantly contributed to the ethnical survival disparity. Especially, tumor size was the most important contributor (HR, 1.11; 95%CI, 1.07-1.16). There is no ethnical survival disparity in patients undergoing liver transplantation and sub-analysis of patients within the Milan criteria for liver transplantation demonstrated no significant survival disparity between African Americans and non-Hispanic Whites in transplantation adjustment analysis (HR, 1.23; 95%CI, 1.11-1.35 in non-adjustment analysis to HR, 1.05; 95%CI, 0.95-1.15 after adjustment). Finally, no important contributor to the superior overall survival in Asians was identified. In conclusion, poor tumor presentation at diagnosis, limited benefit from resection and restricted utilization of liver transplantation are important contributors to poorer survival of African Americans with HCC

    Rapid hepatic clearance of full length CCN-2/CTGF: a putative role for LRP1-mediated endocytosis

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this record.CCN-2 (connective tissue growth factor; CTGF) is a key factor in fibrosis. Plasma CCN-2 has biomarker potential in numerous fibrotic disorders, but it is unknown which pathophysiological factors determine plasma CCN-2 levels. The proteolytic amino-terminal fragment of CCN-2 is primarily eliminated by the kidney. Here, we investigated elimination and distribution profiles of full length CCN-2 by intravenous administration of recombinant CCN-2 to rodents. After bolus injection in mice, we observed a large initial distribution volume (454 mL/kg) and a fast initial clearance (120 mL/kg/min). Immunosorbent assay and immunostaining showed that CCN-2 distributed mainly to the liver and was taken up by hepatocytes. Steady state clearance in rats, determined by continuous infusion of CCN-2, was fast (45 mL/kg/min). Renal CCN-2 clearance, determined by arterial and renal vein sampling, accounted for only 12 % of total clearance. Co-infusion of CCN-2 with receptor-associated protein (RAP), an antagonist of LDL-receptor family proteins, showed that RAP prolonged CCN-2 half-life and completely prevented CCN-2 internalization by hepatocytes. This suggests that hepatic uptake of CCN-2 is mediated by a RAP-sensitive mechanism most likely involving LRP1, a member of the LDL-receptor family involved in hepatic clearance of various plasma proteins. Surface plasmon resonance binding studies confirmed that CCN-2 is an LRP1 ligand. Co-infusion of CCN-2 with an excess of the heparan sulphate-binding protamine lowered the large initial distribution volume of CCN-2 by 88 % and reduced interstitial staining of CCN-2, suggesting binding of CCN-2 to heparan sulphate proteoglycans (HSPGs). Protamine did not affect clearance rate, indicating that RAP-sensitive clearance of CCN-2 is HSPG independent. In conclusion, unlike its amino-terminal fragment which is cleared by the kidney, full length CCN-2 is primarily eliminated by the liver via a fast RAP-sensitive, probably LRP1-dependent pathway.FibroGen, Inc

    Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats

    Get PDF
    Germ-free HLA-B27 transgenic (TG) rats do not develop colitis, but colonization with specific pathogen-free (SPF) bacteria induces colitis accompanied by immune activation. To study host-dependent immune responses to commensal caecal bacteria we investigated cytokine profiles in mesenteric lymph node (MLN) cells from HLA-B27 TG versus nontransgenic (non-TG) littermates after in vitro stimulation with caecal bacterial lysates (CBL). Supernatants from CBL-stimulated unseparated T- or B- cell-depleted MLN cells from HLA-B27 TG and non-TG littermates were analysed for IFN-γ, IL-12, TNF, IL-10 and TGF-β production. Our results show that unfractionated TG MLN cells stimulated with CBL produced more IFN-γ, IL-12 and TNF than did non-TG MLN cells. In contrast, CBL-stimulated non-TG MLN cells produced more IL-10 and TGF-β. T cell depletion abolished IFN-γ and decreased IL-12 production, but did not affect IL-10 and TGF-β production. Conversely, neither IL-10 nor TGF-β was produced in cultures of B cell-depleted MLN. In addition, CD4+ T cells enriched from MLN of HLA-B27 TG but not from non-TG rats produced IFN-γ when cocultured with CBL-pulsed antigen presenting cells from non-TG rats. Interestingly, IL-10 and TGF-β, but not IFN-γ, IL-12 and TNF were produced by MLN cells from germ-free TG rats. These results indicate that the colitis that develops in SPF HLA-B27 TG rats is accompanied by activation of IFN-γ-producing CD4+ T cells that respond to commensal bacteria. However, B cell cytokine production in response to components of commensal intestinal microorganisms occurs in the absence of intestinal inflammation

    Rapid hepatic clearance of full length CCN-2/CTGF: a putative role for LRP1-mediated endocytosis

    Get PDF
    CCN-2 (connective tissue growth factor; CTGF) is a key factor in fibrosis. Plasma CCN-2 has biomarker potential in numerous fibrotic disorders, but it is unknown which pathophysiological factors determine plasma CCN-2 levels. The proteolytic amino-terminal fragment of CCN-2 is primarily eliminated by the kidney. Here, we investigated elimination and distribution profiles of full length CCN-2 by intravenous administration of recombinant CCN-2 to rodents. After bolus injection in mice, we observed a large initial distribution volume (454 mL/kg) and a fast initial clearance (120 mL/kg/min). Immunosorbent assay and immunostaining showed that CCN-2 distributed mainly to the liver and was taken up by hepatocytes. Steady state clearance in rats, determined by continuous infusion of CCN-2, was fast (45 mL/kg/min). Renal CCN-2 clearance, determined by arterial and renal vein sampling, accounted for only 12 % of total clearance. Co-infusion of CCN-2 with receptor-associated protein (RAP), an antagonist of LDL-receptor family proteins, showed that RAP prolonged CCN-2 half-life and completely prevented CCN-2 internalization by hepatocytes. This suggests that hepatic uptake of CCN-2 is mediated by a RAP-sensitive mechanism most likely involving LRP1, a member of the LDL-receptor family involved in hepatic clearance of various plasma proteins. Surface plasmon resonance binding studies confirmed that CCN-2 is an LRP1 ligand. Co-infusion of CCN-2 with an excess of the heparan sulphate-binding protamine lowered the large initial distribution volume of CCN-2 by 88 % and reduced interstitial staining of CCN-2, suggesting binding of CCN-2 to heparan sulphate proteoglycans (HSPGs). Protamine did not affect clearance rate, indicating that RAP-sensitive clearance of CCN-2 is HSPG independent. In conclusion, unlike its amino-terminal fragment which is cleared by the kidney, fu

    Waveguide single-photon detectors for integrated quantum photonic circuits

    Get PDF
    The generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.Comment: 11 pages, 4 figure

    Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics

    Get PDF
    cited By 0Balance between excitation (E) and inhibition (I) is a key principle for neuronal network organization and information processing. Consistent with this notion, excitation-inhibition imbalances are considered a pathophysiological mechanism in many brain disorders including autism spectrum disorder (ASD). However, methods to measure E/I ratios in human brain networks are lacking. Here, we present a method to quantify a functional E/I ratio (fE/I) from neuronal oscillations, and validate it in healthy subjects and children with ASD. We define structural E/I ratio in an in silico neuronal network, investigate how it relates to power and long-range temporal correlations (LRTC) of the network's activity, and use these relationships to design the fE/I algorithm. Application of this algorithm to the EEGs of healthy adults showed that fE/I is balanced at the population level and is decreased through GABAergic enforcement. In children with ASD, we observed larger fE/I variability and stronger LRTC compared to typically developing children (TDC). Interestingly, visual grading for EEG abnormalities that are thought to reflect E/I imbalances revealed elevated fE/I and LRTC in ASD children with normal EEG compared to TDC or ASD with abnormal EEG. We speculate that our approach will help understand physiological heterogeneity also in other brain disorders.Peer reviewe
    • …
    corecore