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SUMMARY

Germ-free HLA-B27 transgenic (TG) rats do not develop colitis, but colonization with specific patho-
gen-free (SPF) bacteria induces colitis accompanied by immune activation. To study host-dependent
immune responses to commensal caecal bacteria we investigated cytokine profiles in mesenteric lymph
node (MLN) cells from HLA-B27 TG versus nontransgenic (non-TG) littermates after in vitro stimu-
lation with caecal bacterial lysates (CBL). Supernatants from CBL-stimulated unseparated T- or B- cell-
depleted MLN cells from HLA-B27 TG and non-TG littermates were analysed for IFN-y, IL-12, TNF,
IL-10 and TGF-f production. Our results show that unfractionated TG MLN cells stimulated with CBL
produced more IFN-y, IL-12 and TNF than did non-TG MLN cells. In contrast, CBL-stimulated non-
TG MLN cells produced more IL-10 and TGF-f. T cell depletion abolished IFN-yand decreased IL-12
production, but did not affect IL-10 and TGF-J production. Conversely, neither IL-10 nor TGF-f was
produced in cultures of B cell-depleted MLN. In addition, CD4" T cells enriched from MLN of
HLA-B27 TG but not from non-TG rats produced IFN-y when cocultured with CBL-pulsed antigen
presenting cells from non-TG rats. Interestingly, IL-10 and TGF-f, but not IFN-y, IL-12 and TNF were
produced by MLN cells from germ-free TG rats. These results indicate that the colitis that develops in
SPF HLA-B27 TG rats is accompanied by activation of IFN-y-producing CD4* T cells that respond to
commensal bacteria. However, B cell cytokine production in response to components of commensal
intestinal microorganisms occurs in the absence of intestinal inflammation.
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INTRODUCTION (IFN-y), while suppression of inflammation is mediated by the
regulatory cytokines interleukin-10 (IL-10) and transforming
growth factor-f8 (TGF-p). The influence of resident flora on the
initiation and perpetuation of spontaneous colitis, gastritis and
arthritis has been well characterized in HLA-B27/52 microglob-
ulin transgenic (TG) rats, which develop disease by 3 months of
age when raised under specific pathogen-free (SPF) conditions
[2]. When raised in a germ-free environment these rats fail to
develop gastritis, colitis and arthritis [3,4]. However, these ani-
mals develop colitis and gastritis within one month after transfer
to a SPF environment [3]. In this model Bacteroides vulgatus pref-
erentially induces colitis after monoassociation for one month,
with no inflammation resulting from Escherichia coli monoasso-

In recent years several studies have emphasized the role of com-
mensal intestinal bacteria in the pathogenesis of experimental
chronic immune-mediated intestinal inflammation and human
inflammatory bowel diseases. This is most clearly demonstrated in
a wide variety of genetically engineered and induced rodent mod-
els in which the susceptible host develops spontaneous colitis in
the presence of nonpathogenic resident intestinal organisms [1].
In most rodent models chronic intestinal inflammation is medi-
ated by the Th1 cytokines interleukin-12 (IL-12) and interferon-y
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ciation [5]. The importance of host genetic susceptibility was illus-
trated by the lack of colitis or activation of immune responses in
wild type (non-TG) littermates colonized with the same SPF bac-
teria or B. vulgatus [3,5]. The role of resident intestinal flora in the
pathogenesis of colitis in TG rats is further emphasized by an
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increase of caecal inflammation after the creation of a blind caecal
loop which results in an increased bacterial load, including
Bacteroides species [6], and studies showing that broad spectrum
antibiotics can prevent as well as treat colitis [7]. In other exper-
imental models of colitis, similar findings have been reported
[8,9].

Although these observations suggest a central role for normal
luminal bacteria in the induction and perpetuation of immune-
mediated colitis in this model, the mechanisms by which bacteria
activate immune cells responsible for the development of colitis
remain unclear. The aim of our study was to investigate cytokine
responses induced in HLA-B27 TG rats and their non-TG litter-
mates by commensal enteric bacteria and their products. We show
that lysates of caecal contents induce mesenteric lymph node
(MLN) cells to produce an array of cytokines. MLN CD4" cells
from TG rats, but not from non-TG rats, produce IFN-v, which is
dependent on in vivo bacterial colonization. Both TG and non-
TG MLN B cells produce IL-10 and TGF-f. The production of
these two regulatory cytokines is independent of prior bacterial
colonization.

MATERIALS AND METHODS

Animals

HLA-B27 TG rats (the 33-3 line on the F344 background) and
their non-TG littermates, originally obtained from Dr Joel D.
Taurog, University of Texas Southwestern Medical Center were
maintained in SPF housing conditions at the University of North
Carolina, Chapel Hill or in germ-free conditions in the Gnotobi-
otic Animal Core of the Center for Gastrointestinal Biology and
Disease at the College of Veterinary Medicine, NC State Univer-
sity in Raleigh, NC, USA. Presence or absence of the HLA-B27
transgene was determined by PCR using DNA isolated from tail
clippings. Rats between the ages of 4 and 6 months were used for
our studies. All studies were approved by University of North
Carolina at Chapel Hill Institutional Animal Care and Use
Committee.

Histology

Colons and caeca were fixed and stained as previously described
[3]- A validated histological inflammatory score ranging from 0 to
4 was used for blinded evaluation [3].

Preparation of MLN cells and enrichment of lymphoid cell
subpopulations

Mesenteric lymph nodes were removed from HLA-B27 TG and
non-TG rats, and single cell suspensions were prepared by gentle
teasing. Magnetic bead separation, using antibody coated micro-
beads and columns designed for cell depletion (Miltenyi Biotec,
Auburn, CA, USA) was performed according to the manufac-
turer’s instructions using the following reagents: LD columns; Rat
Pan T Cell Microbeads, clone OX-52, for T cell depletion; Rat
CD45RA, clone OX-33, for B cell depletion; Rat CD4 Micro-
beads, clone OX-38, for CD4" cell depletion; Rat CD8a Micro-
beads, clone G38, for CD8" cell depletion; and Rat CD45RA plus
Rat CD8a Microbeads to enrich CD4* cells.

Preparation of caecal bacterial lysates

Caecal bacterial lysates (CBL) were prepared as described by
Cong et al. [10]. Briefly, caecal contents from several non-TG or
TG rats were solubilized by vortexing in RPMI, and incubated

with 10 ug/ml DNA-ase, 0-01 M MgCl and then homogenized
for 3 min using 0-1 mm glass beads in a Mini-Bead Beater (Bio-
spec Products, Bartlesville, OK). After centrifuging at 10 000 g
for 10 min the supernatant was filtered through a 0-45 um
syringe filter. Sterility was confirmed by aerobic and anaerobic
culture.

Mesenteric lymph node cell cultures

Either unseparated MLN cells, or cell subpopulations obtained
after antibody-coated magnetic bead depletion were washed and
4 x 10° cells were cultured in 96 well flat bottom microplates (Cos-
tar 3595), in 0-2 ml complete medium (RPMI 1640 plus 5% heat
inactivated fetal calf serum, 2 mM L-glutamine, 1 mM sodium
pyruvate, 5 x 10° M 2-mecaptoethanol, and 50 ug/ml gentamicin)
for 3 days, which we found to be optimal for detection of all of the
cytokines measured with the exception of TGF-. Similar relative
differences in cytokines produced by TG versus non-TG MLN
cells were present at each time point between 12 h and 6 days. For
analysis of TGF-8 production, 8 x 10° cells were cultured for
5 days in serum-free RPMI which was supplemented with 1%
Nutridoma-SP (Roche Molecular Biochemicals, Mannheim, Ger-
many). Higher levels of TGF-f were consistently found in super-
natants of day 5 compared to day 3 cultures. Cells were stimulated
with different concentrations of caecal bacterial lysate as indi-
cated for each experiment. Culture supernatants were collected
and stored at —20°C.

Preparation of APC and cocultures with CD4" cells.

We used T-cell depleted MLN from non-TG rats for APC. T cells
were lysed using IgM anti-rat CD3 (clone 1F4, Pharmingen, San
Diego, CA, USA), followed by incubation with rabbit comple-
ment (normal rabbit serum prepared in this laboratory). The cells
remaining after complement-mediated lysis of CD3* cells were
>95% surface Ig positive, <2% CD4 positive and <2% CDS8
positive. The cells were pulsed overnight with caecal bacterial
lysate from non-TG rats (100 pg/ml) or with unrelated protein
antigen keyhole limpet haemocyanin (KLH; Pierce, Rockford, IL,
USA) in complete medium. The pulsed APC were then washed to
remove excess antigens and other bacterial products. Magnetic
bead-enriched CD4" cells, 2 x 10° per well, were stimulated with
antigen-pulsed APC, 3 x 10° per well. Supernatants were har-
vested after 3 days and stored at —20°C.

Flow cytometry

MLN cells before and after magnetic bead separation were eval-
uvated by flow cytometry using the following fluorochrome
labelled or unlabelled reagents. For detection of HLA-B27-
expressing cells, we used culture supernatant from the murine
hybridoma, designated ME-1, obtained from ATCC (Rockville,
MD, USA), followed by FITC labelled goat anti-mouse IgG (y
chain specific) antibody (Southern Biotechnology, Birmingham,
AL, USA). For surface immunoglobulin positive B cells, we used
FITC labelled goat anti-rat IgG (H + L) antibody (Kirkegaard &
Perry Laboratories, Gaithersburg, MD, USA). For CD4" and
CD8" cells we used PE-anti-CD4 monoclonal antibody (clone
W3/25) and FITC anti-CD8 monoclonal antibody (clone OX-8)
(Caltag, Burlingame, CA, USA), respectively.

Cytokine and PGE, measurements
Cytokines in cell culture supernatants were measured by ELISA
using unlabelled capture antibodies and biotin-labelled detection
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antibodies, followed by horse-radish peroxidase labelled Strepta-
vidin. The concentration of each cytokine was determined by
comparison to a standard curve generated using recombinant pro-
teins. For IFN-y, we used unlabelled polyclonal anti-IFN-y anti-
body and biotin-labelled monoclonal anti-IFN-y antibody (clone
DB-1) (Biosource International, Camarillo, CA, USA). For IL-10
we used unlabelled monoclonal anti-rat IL-10 antibody (clone
AS-7) and biotin-labelled monoclonal anti-rat IL-10 antibody
(clone A5-6) (BD Biosciences Pharmingen, San Diego, CA,
USA). For IL-12 we used a rat IL-12 p40 CytoSet (Biosource
International). For TNF we used a rat TNF BD OptETA ELISA
Set (BD Biosciences Pharmingen). TGF-f concentrations were
measured after acidification and neutralization according to the
manufacturer using a TGF-f1 specific ELISA (Promega, Madi-
son, WI, USA). PGE, was measured using a competitive immu-
noassay Correlate-EIA (Assay Designs Inc., Ann Arbor MI,
USA).

Cytokine mRNA expression in caecal tissues

Total RNA was extracted from caecal tissue using a standard
technique as described previously [11]. One microgram of
RNA isolated from each sample was reverse transcribed, and
the ¢cDNA (1-2 ug) was then amplified using primers specific
for rat cytokines [11-16]. Negative controls without cDNA
were included in each experiment. Aliquots of all samples
were analysed by electrophoresis on 2% agarose gel contain-
ing GelStar® (BioWhittaker). The size of the PCR product
was compared to the predicted size using a 100 bp DNA lad-
der (Gibco BRL, Grand Island, NY, USA). The DNA prod-
ucts were visualized by ultraviolet fluorescence and
photographed (Polaroid 665, Polaroid Corp, Cambridge, MA).
The cytokine mRNA was quantified by densitometry, and the
ratio to B-actin mRNA was calculated.

Statistical analysis

Cytokine levels are expressed as mean + standard deviation of
triplicate measurements. A nonpaired Student t-test or alternate
Welch t-test was used, in which a two-tailed P-value of <0-05 was
considered statistically significant.

RESULTS

Evaluation of colitis and of lymphoid cell subpopulations in
MLN of SPF and of germ-free TG and non-TG rats

TG rats housed in SPF conditions showed significant gross and
histological evidence of colitis of the entire colon and caecum,
with over 95% of the TG rats demonstrating histology scores
higher than 3:0 on a 0-4 scale. In contrast, their non-TG
littermates exposed to the same microflora did not develop coli-
tis, nor did germ-free TG or non-TG rats exhibit any disease
(Fig. 1).

SPF TG rats with colitis had larger MLN, containing over 3-
fold more cells, than did MLN of their non-TG littermates
(Table 1). MLN from SPF TG rats contained a significantly higher
percentage and total number of CD4* T cells than non-TG MLN
(Table 1). The percentage of CD8* T cells and of B cells was lower
in TG versus non-TG MLN. However, due to the higher number
of total MLN cells, TG MLN contained significantly more CD8*
cells and B cells than did MLN of non-TG littermates.

MLN of germ-free rats were small and contained much
lower cell numbers than MLN of SPF rats. The total number of
MLN cells was not significantly different between germ-free TG
and germ-free non-TG rats. MLN from germ-free TG rats con-
tained higher proportions and higher total numbers of CD4*
cells but lower proportions and fewer total numbers of B cells
compared to MLN of non-TG littermates, whereas the percent-
ages and numbers of CD8" cells were similar (Table 1). All

Fig. 1. Representative photomicrographs of tissue sections (x40) from ceca of 5-6 month old (a) germ-free non-TG; (b) germ-free TG; (c)
SPF non-TG; (d) SPF TG rats. Note the extensive mucosal and submucosal inflammation as well as significant crypt hyperplasia in the
caecum from a SPF TG rat (d), whereas no colitis was present in caecal tissue from germ-free rats or in the caecum from non-TG rats

housed in an SPF environment (a—c).
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Table 1. Cell numbers and cell subpopulations in mesenteric lymph nodes of specific pathogen free and germ-free HLA-B27 transgenic rats and their
nontransgenic littermates

Specific pathogen free Germ-free
nontransgenic transgenic nontransgenic transgenic
n=15 n=15 n=16 n=12

Total cells (x 10°) 87662 279-8 £22:7* 41-8+4-8 41-7£55
Cell subpopoulations (%)
CD4* 40-3+0-9 562 +1-1% 28-1+14 422+ 1-9%
CD8* 167 £0-6 13-4 £ 0-5F 119£0-8 135+ 0-6
Surface Ig 36:4+1-8 24-9 +1-2% 51:3+27 38-7£2-1%
Cell subpopoulations (n x 10°)
CD4* 355+29 155-6 £ 11.9% 114+1-1 177+ 2-7%
CD8"* 147x12 37-6 +3-5% 5:0+0-7 5-8+£1-0
Surface Ig 31-9+27 70-3 + 6-8* 22:2+3:4 16:0+2-1

Values represent mean £ SEM of cell numbers or of percentages of the different lymphoid cell subpopulations.*P < 0-001, £P < 0-01, 1P < 0-05 versus

non-TG littermates.

animals identified as HLA-B27 TG by PCR analysis of tail
DNA also expressed HLA-B27 on MLN cells as determined by
flow cytometry.

Cytokine production in unseparated MLN cells from SPF TG
versus non-TG rats

Unseparated TG MLN cells, stimulated in vitro with 100 ug/ml
caecal bacterial lysate produced significantly more IFN-y, IL-12,
and TNF compared to MLN cells from non-TG rats (Figs 2a—c).
In contrast, non-TG MLN cells stimulated with 10 ug/ml CBL
produced significantly more IL-10 than TG MLN cells (Fig. 2d).
TGF-f production by MLN cells followed the same trend as IL-10
after 10 ug/ml and also 100 ug/ml caecal bacterial lysate stimula-
tion; non-TG unseparated MLN cells produced significantly more
TGF-f than those from TG littermates (Fig. 2e). PGE, concen-
trations did not differ significantly in caecal bacterial lysate stim-
ulated MLN cell cultures from TG versus non-TG rats (data not
shown).

Stimulation with caecal bacterial lysate obtained from either
TG rats or from non-TG rats showed the same pattern; both
lysates induce more IFN-v, IL-12, and TNF, and less IL-10 and
TGF-f in MLN cell cultures of TG compared to non-TG rats
(data not shown). In five separate experiments, we did not
observe consistent differences in cytokine levels induced by bac-
terial lysates from either TG or from non-TG rats. Therefore, we
chose to use caecal bacterial lysate from non-TG rats for the
remainder of our experiments.

Caecal cytokine mRNA expression in SPF TG versus

non-TG rats

The mRNA expression of pro-inflammatory cytokines was signif-
icantly higher in caecal tissues from TG compared to non-TG rats
(Fig. 3). The cytokine/f-actin ratios for IL-18, IFN-yas well as for
IL-12 were significantly higher in TG rats compared to non-TG
littermates. Consistent with results from caecal bacterial lysate-
stimulated unseparated MLN cultures, caecal IL-10 mRNA
expression was significantly higher in non-TG versus TG rats.
However, caecal mRNA expression for TGF-§ did not differ
between TG and non-TG rats.

Cytokine production in MLN cells from germ-free TG versus
non-TG rats

Caecal bacterial lysate stimulation of MLN cells from germ-free
rats did not induce IFN-y, IL-12 or TNF production compared to
unstimulated levels (data not shown), indicating that production
of these cytokines in TG rats depends on in vivo exposure to com-
mensal bacteria and their products. In contrast, MLN cells from
both TG and non-TG germ-free rats produced IL-10 and TGF-f
after stimulation with bacterial lysate (Fig.4), indicating that
these two cytokines can be produced by naive cells independent
of in vivo exposure to commensal intestinal microorganisms. As in
SPF rats, IL-10 detected in the supernatants of MLN cell cultures
from germ-free non-TG rats was significantly more than that from
germ-free TG rats after stimulation with 1 ug/ml and with 10 ug/
ml caecal lysate (Fig. 4a). After stimulation with the optimal dose
of 100 pg/ml, germ-free non-TG MLN cells produced almost
twice as much TGF-f compared to germ-free TG MLN cells
(Fig. 4b).

Cytokine production in MLLN cells after T cell or B cell depletion
or in cocultures of CD4 cells plus antigen-pulsed APC
To determine which cell type(s) are critical to the production of
the cytokines that we evaluated, we carried out negative selection
to deplete T cells or B cells from MLN cell preparations. After T
cell depletion less than 2-5% of the total remaining cells were
CD4*/CD8", as determined by flow cytometry. Approximately
97% of the T cell-depleted MLN cells were positive for surface Ig,
which is characteristic of B cells. In response to 100 ug/ml of cae-
cal bacterial lysate, T cell-depleted MLN from TG rats did not
produce IFN-y (Fig.5a). IFN-y production was dramatically
reduced but not absent in cultures of B cell depleted MLN. CD4*
cell depletion of MLN cells, with less than 0-5% remaining CD4*
cells, significantly reduced IFN-y production to the same degree
as T cell depletion (Fig. 5b). In contrast, CD8" cell depletion of
MLN cells, with less than 0-5% CDS8" cells, had no effect on IFN-
yproduction after bacterial lysate stimulation (Fig. 5b).

IL-12 production was significantly reduced after T cell deple-
tion in TG MLN in response to 100 ug/ml caecal bacterial lysate
(Fig. 5c). Supernatants of B cell-depleted MLN cell cultures
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Fig. 2. Cytokine levels in supernatants of unseparated MLN cell cultures from 5 month old SPF non-TG ([J) or TG (B&) rats after
stimulation with various concentrations of caecal bacterial lysate (in ug/ml) from non-TG rats. (a) IFN-y, (b) IL-12 (p40); (c) TNF; (d) IL-
10; (e) TGF-B. Data shown are from a representative experiment out of two to seven separate experiments. Cytokines levels are expressed
in ng/ml. Values represent the mean and standard deviations of each cytokine detected in triplicate supernatants. **P < 0-01 versus non-
TG MLN cell supernatants, *P < 0-05 versus non-TG MLN cell supernatants.

contained slightly more IL-12 than did supernatants of unsepa-
rated MLN.

To more precisely evaluate CD4" T cell responses to caecal
bacterial lysate, we cocultured CD4-enriched MLN cells with cae-
cal bacterial lysate pulsed APC. As shown in Fig. 6, CD4" cells
from TG but not from non-TG MLN produced high amounts of
IFN-yin coculture with caecal bacterial lysate pulsed APC. Inter-

estingly, the in vitro response is not dependent on antigen presen-
tation via the HLA-B27 molecule because CD4" cells from TG
rats respond to antigen-pulsed non-TG APC. Further studies
focusing on the potential differences between APC from TG and
from non-TG rats to present bacterial antigens are in progress.
In contrast to IFN-y and IL-12, supernatants of caecal
bacterial lysate stimulated T cell-depleted MLN cells contained
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Fig. 3. Epression of IFN-y, IL-12, IL-10, TGF-, and IL-1 mRNA in
caecal tissues from SPF TG rats (B) and their non-TG littermates ({J).
Total RNA was reverse transcribed and amplified for various cycles by the
polymerase chain reaction. Cytokine and f-actin mRNA expression was
evaluated in 8 non-TG and 6 TG rats. Tissue from each individual animal
was analysed separately. The results shown represent the averages of the
ratios of specific cytokine versus B-actin mRNA obtained in two to three
separate experiments. **P < 0-01 versus non-TG caecal tissue, *P < 0-05
versus non-TG caecal tissue.

equivalent or greater amounts of IL-10 and TGF-f compared to
supernatants of unseparated MLN cells, indicating that these two
cytokines are not produced by T cells (Fig. 7). Moreover, the lev-
els of IL-10 and TGF-p in supernatants of B cell depleted MLN
were even lower than amounts in supernatants of unstimulated
cells, indicating that B cells either produce the majority of the IL-
10 and TGF-f or that B cells are essential to their production
(Fig. 7).

As also shown in Fig. 7, 1L-10 and TGF- levels were lower in
supernatants of T cell-depleted TG compared to non-TG MLN
cells after caecal bacterial lysate stimulation. In a total of seven
separate experiments, there is a trend towards production of
lower amounts of IL-10 by T cell-depleted TG MLN cells
compared to non-TG cells (ratio IL-10 TG:IL-10 non-
TG =0-78 £ 0-06). These results suggest that there is only a mar-
ginal difference between the abilities of TG and non-TG MLN
cells to produce IL-10 in response to commensal bacteria and
their products.

DISCUSSION

We evaluated in vitro responses of MLN cells to physiologically
relevant components of luminal contents, since MLN drain the
diseased caecum and proximal colon in SPF HLA-B27 TG rats.
For these studies, we prepared lysates of caecal contents as
described by Cong et al. [10], rather than attempting to culture
intestinal bacteria for the following reasons:

e the lysates contain bacterial products that are present at the
site of maximal inflammation;

e not all enteric bacteria can be cultured;

e culturing can change bacterial antigen expression.

We showed that caecal bacterial lysate can stimulate significantly
higher amounts of those cytokines generally associated with Th1
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Fig. 4. Cytokine levels in supernatants of unseparated MLN cell cultures
from 4 to 5 month old germ-free non-TG () or TG (B&) rats after stim-
ulation with various concentrations of caecal bacterial lysates (in pg/ml)
from non-TG rats. (a) IL-10; (b) TGF-S. Data shown are from a represen-
tative experiment out of five (IL-10) or two (TGF-f3) separate experiments.
Cytokines levels are expressed in ng/ml. Values represent the mean and
standard deviations of each cytokine detected in triplicate supernatants.
#*P < 0-01 versus non-TG MLN cell supernatants, *P < 0-05 versus non-
TG MLN cell supernatants.

responses including IFN-y, IL-12 and TNF from unseparated
MLN cells collected from SPF TG rats than from non-TG litter-
mates. These results correlated with caecal mRNA expression of
the same cytokines in colitic SPF TG rats, which is in agreement
with and extends a previous report by Rath et al. [3]. We therefore
conclude that in vitro production of pro-inflammatory cytokines
by draining MLN cells stimulated with commensal caecal bacte-
rial lysates correlates with mucosal cytokine responses in the dis-
eased caecum. These results, and our failure to detect IFN-y, IL-12
or TNF in cultures of MLN cells from germ-free TG rats, indicate
that caecal bacteria and their products can induce these pro-
inflammatory cytokines in MLN and caecal tissues of disease-sus-
ceptible SPF HLA-B27 TG rats. T cell-depletion in our studies
resulted in complete loss of IFN-y responses by MLN from TG
rats. Furthermore, CD4 T cell depletion of TG MLN cells abro-
gated IFN-y production, whereas CD8" cell depletion had no
effect. In addition, CD4"-enriched MLN cells from TG but not
from non-TG rats produced IFN-y after stimulation with caecal
bacterial lysate pulsed APC. Combined, these results indicate that
caecal bacteria and their products stimulate MLN-derived CD4 T
cells to produce IFN-y in SPF TG rats. The disease-inducing
capacity of these CD4 T cells was demonstrated by the ability of
LN-derived CD4" cells from colitic SPF TG donor rats to transfer
colitis into SPF nude TG recipients, which do not develop disease
in the absence of T cells [17]. MHC class I molecules such as
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HLA-B27 are generally thought to activate CD8*, not CD4* T
cells. However, CD8" T cells were not essential to the pathogen-
esis of colitis in HLA-B27 TG rats [18]. While the role of the
HLA-B27 molecule in development of inflammatory diseases has
not been identified, a variety of plausible explanations have been
proposed, based on the ability of HLA-B27 to activate CD4* T
cells. Recent reports described CD4" T cells that recognized
unusual forms of HLA-B27, such as heterodimers that lack an
associated peptide, altered three dimensional structure of HLA-
B27, or HLA-B27 homodimers [19]. HLA-B27 homodimers that
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Fig. 6. IFN-y production by CD4* MLN T cells in coculture with caecal
bacterial lysate-pulsed APC. CD4" T cells were enriched from MLN of
SPF TG or non-TG rats and stimulated for 3 days with either caecal
bacterial lysate-pulsed () or KLH-pulsed ((0) APC prepared from MLN
of non-TG rats as described in Materials and Methods. Caecal bacterial
lysate-pulsed APC alone do not produce detectable amounts of IFN-y.
Values represent the mean and standard deviation of IFN-y in triplicate
culture supernatants and are representative of six separate experiments.
##% P <0-005 versus IFN-yin supernatants of TG CD4" MLN cells in coc-
ulture with KLH-pulsed APC and versus IFN-yin supernatants of non-TG
CD4" MLN cells in coculture with caecal bacterial lysate-pulsed APC.

are capable of binding peptide and thus taking on MHC class II-
like conformation have been identified [20]. Moreover, MHC
class I-restricted CD4" T cells derived from MHC class II-defi-
cient mice induced colitis in congenic immunodeficient mice [21].
Any or all of the proposed mechanisms could explain the link
between HLA-B27 expression and development of inflammatory
disease in the transgenic rat model that we have employed.

Interestingly, in our studies, IFN-y production by TG MLN
cells was significantly reduced after B cell depletion, indicating
either that B cells provide help for IFN-y production by MLN-
derived CD4 T cells through APC activity or, less likely, that these
cells produce IFN-y. In a comprehensive analysis reported by
Harris et al. B cells, like T cells, could be divided into subsets (des-
ignated Bel and Be2) [22]. Bel cells, but not Be2 cells produce
IFN-y. In addition, different B cell subsets have the capacity to
influence cytokine production by CD4* T cell subsets [22]. Fur-
thermore, lower levels of IFN-y were detected in spleen cell cul-
tures of LCM V-infected B cell deficient mice compared to B cell
replete mice after in vitro antigen stimulation [23].

IL-12 production in response to the optimal concentration of
caecal bacterial lysate was reduced by 80% in T cell-depleted
MLN cell cultures, indicating that IL-12 production is T cell-
dependent. Although IL-12 is mainly produced by APC such as
macrophages and dendritic cells (DC), activated T cells can stim-
ulate TL-12 production by APC [24].

IFN-y, IL-12 and TNF were produced by caecal bacterial
lysate-stimulated TG MLN cells, but not by non-TG MLN cells. In
addition, IFN-,IL-12 and TNF were not detected in supernatants
of lysate-stimulated MLN cell cultures from germ-free rats. Thus,
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Fig. 7. Cytokine levels in MLN cell cultures from 4 to 5 month old SPF
non-TG and TG rats. (a) IL-10 and (b) TGF-f production by MLN cells
which were either unseparated, T cell depleted, or B cell depleted, then
stimulated with 10 ug/ml of caecal bacterial lysate from non-TG rats.
Cytokine levels are expressed in ng/ml. Values represent the mean and
standard deviations of each cytokine detected in triplicate supernatants
and are representative of seven (IL-10) or three (TGF-f) separate exper-
iments. **P < 0-01 versus unseparated MLN cell supernatants.

the production of these three cytokines is dependent both on the
genetic susceptibility of the host and on prior in vivo stimulation
by commensal intestinal bacteria or the presence of colonic
inflammation.

Of potential relevance to immunoregulation, we observed
that caecal bacterial lysate-stimulated unseparated MLN cells
from non-TG rats produced significantly more IL-10 and TGF-f3
relative to their TG littermates, whereas the production of
another immunoregulatory molecule, PGE, was not significantly
different in supernatants from lysate-stimulated TG and non-TG
MLN cells. IL-10 is an immunoregulatory cytokine, produced by
T regulatory cells (Tr-1) and also by B cells and DC, with the abil-
ity to prevent the development of colitis. IL-10 inhibits antigen-
specific proliferation and cytokine production by Thl lympho-
cytes and has down-regulatory effects on APC such as suppres-
sion of macrophage activation and IL-12 production [25-27]. The
important anti-inflammatory effect of IL-10 is demonstrated by
the observation that severe inflammatory disease develops in
interleukin-10 deficient mice. The role of commensal bacteria in
this model is underscored by the observation that germ-free IL-10
deficient mice do not develop colitis [28,29]. IL-12 and IFN-ypro-

duction in response to in vitro LPS stimulation is elevated in
spleen cells from IL-10-deficient compared to wild type control
mice [30]. Several in vivo studies have shown that parenteral
administration of IL-10 or IL-10- producing T cells could prevent
colitis in models of chronic intestinal inflammation [31-35]. How-
ever, parenterally administered recombinant IL-10 appeared to
have limited capacity to reverse established experimental colitis
[11] or human Crohn’s disease [36]. A local mucosal delivery of
IL-10 by genetically engineered Lactococcus lactis or by adenovi-
ral vectors encoding IL-10 was able to reverse colitis in IL-10 defi-
cient mice and dextran sodium sulphate-induced colitis [37,38].

TGF- is another immunoregulatory molecule, which is pro-
duced by APC and by Th3/Trl1 lymphocytes, whereas TGF-f3
receptors are expressed on a variety of cells [39]. Of significant
interest, we show here that caecal bacterial lysate stimulated B
cells, but not T cells, produce I1L-10 and TGF-f. The importance of
TGF-B in immune homeostasis is demonstrated by the fact that
TGF-f deficient mice die within 5 weeks of severe multiple organ
inflammation [40]. CD4* CD25" T cells exert immunosuppression
by a cell-cell interaction involving cell surface TGF-f [41]. TGF-f
is important for the regulation of intestinal inflammation. Intra-
nasal administration of a TGF-B-containing plasmid prevented
TNBS induced colitis [42].

Our results show that the levels of IL-10 and TGF-f in super-
natants of unseparated MLN cell cultures from either germ-free
or SPF rats correlated with the percentage of B cells, and that nei-
ther IL-10 nor TGF-f were detected in B cell-depleted MLN cul-
tures. B cells display several immune functions, such as
production of immunoglobulins and cytokines, presentation of
antigens, and potentiation of T cell responses [19,43]. B cells also
have immunoregulatory functions [44-46], and murine B-1 B cells
have been shown to produce IL-10 after LPS stimulation [47].
Mizoguchi et al. [48] demonstrated that IL-10-producing B cells
are protective, since B cel/TCRa double deficient mice had more
colitis than TCRo deficient mice with competent B cells. Also,
transfer of B cells from IL-10/TCRa double deficient mice was
unable to suppress chronic intestinal inflammation in B cell/
TCRa double deficient mice [48]. Similarly, SPF Gai 2 deficient
mice that develop colitis lack IL-10 producing B cells [49]. IL-10-
producing B cells can also prevent arthritis [50].

In our study MLN-derived B cells also produce TGF-fin both
TG and non-TG rats, housed in either SPF or germ-free condi-
tions. Earlier studies have shown that normal B cells can produce
TGF-f, which limits their own clonal expansion and differentia-
tion [51]. An immunoregulatory function of TGF-S-producing B
cells was shown by Tian ef al. [52] in a murine model of autoim-
mune diabetes in which activated B cells produced TGF-S. These
B cells induced apoptosis of lymphocytes and prevented the
development of autoimmune responses after cotransfer of B cells
with disease-inducing T cells.

The bacterial components that stimulate cytokine production
in our studies are not defined but are likely to be extremely het-
erogeneous, including LPS and peptidoglycan-polysaccharide
complexes that stimulate polyclonal responses by T cells and B
cells as well as bacterial antigens that induce antigen-specific
responses. While we have not identified the nature of the compo-
nents that induce the responses evaluated here, we predict that
bacterial products activate B cells in a polyclonal fashion via Toll-
like receptors as has been demonstrated [53]. In support of this
view, we have found that LPS induces IL-10 and TGF-p, but not
IFN-7, in MLN cell cultures from TG and non-TG rats (data not

© 2004 Blackwell Publishing Ltd, Clinical and Experimental Immunology, 136:30—-39



38 L. A. Dieleman et al.

shown). In addition, we propose that bacterial antigens, presented
by APC in vitro, restimulate T cells that have previously
responded, in vivo, to the same bacterial antigens. A future direc-
tion of these studies is to further identify the effects of the differ-
ent components of bacterial lysates.

In summary, our study indicates that MLN cells produce an
array of cytokines in response to in vitro stimulation with normal,
physiologically relevant caecal bacteria and their products. CD4*
MLN cells from colitis-susceptible HLA-B27 TG rats, maintained
in SPF conditions, produce cytokines that are found in association
with Th1 immune responses. B cells, from both HLA-B27 TG rats
and their non-TG littermates, maintained in SPF or germ-free
conditions, produce IL-10 and TGF-p, cytokines that are often
associated with protective immune response. Thus, our results
reveal the diversity of responses of T cells and of B cells that can
be activated by components of commensal bacteria in a rodent
model of chronic intestinal inflammation.
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