1,851 research outputs found

    Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap

    Full text link
    A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We discuss the alignment algorithm and an experiment-independent implementation including outlier rejection and treatment of weakly determined parameters. Using this implementation, the algorithm has been applied to data recorded with one CMS silicon tracker endcap. Results are compared to both photogrammetry measurements and data obtained from a dedicated hardware alignment system, and good agreement is observed.Comment: 11 pages, 8 figures. CMS NOTE-2010/00

    A comparative investigation of the efficacy of CO2 and high power diode lasers for the forming of EN3 mild steel sheets

    Get PDF
    A comparative investigation of the effectiveness of a high power diode laser (HPDL) and a CO2 laser for the forming of thin section EN3 mild steel sheet has been conducted. The buckling mechanism was identified as the laser forming mechanism responsible for the induced bending. For both lasers it was found that the induced bending angles increased with an increasing number of irradiations and high laser powers, whilst decreasing as the traverse speed was increased. Also, it was apparent from the experimental results that the laser bending angle was only linearly proportional to the number of irradiations when the latter was small due to local material thickening along the bend edge with a high number of irradiations. Owing to the mild steel’s greater beam absorption at the HPDL wavelength, larger bending angles were induced when using the HPDL. However, under certain conditions the performance of the CO2 laser in terms of induced bending angle was seen to approach that of the HPDL. Nevertheless, similar results between the two lasers were only achieved with increasing irradiations, thus it was concluded that the efficacy of the HPDL was higher than that of the CO2 laser insofar as it was more efficient. From graphical results and the employment of an analytical procedure, the laser line energy range in which accurate control of the HPDL bending of the mild steel sheets could be exercised efficiently was found to be 53 J mm-1 < P/v < 78 J mm-1, whilst for the CO2 laser the range was 61 J mm-1 < P/v < 85 J mm-1

    Population density and group size effects on reproductive behavior in a simultaneous hermaphrodite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite growing evidence that population dynamic processes can have substantial effects on mating system evolution, little is known about their effect on mating rates in simultaneous hermaphrodites. According to theory, mating rate is expected to increase with mate availability because mating activity is primarily controlled by the male sexual function. A different scenario appears plausible in the hermaphroditic opisthobranch <it>Chelidonura sandrana</it>. Here, field mating rates are close to the female fitness optimum, suggesting that mating activity remains unresponsive to variation in mate availability.</p> <p>Results</p> <p>Applying an experimental design that aims at independent experimental manipulation of density and social group size, we find substantial increases in mate encounter rate with both factors, but no statistically detectable effects on mating rate in <it>C. sandrana</it>. Instead, mating rate remained close to the earlier determined female fitness optimum.</p> <p>Conclusions</p> <p>We demonstrate that mating rate in <it>C. sandrana </it>is largely unresponsive to variation in mate availability and is maintained close to the female fitness optimum. These findings challenge the prevailing notion of male driven mating rates in simultaneous hermaphrodites and call for complementary investigations of mating rate effects on fitness through the male sexual function.</p

    Intermittent search strategies

    Full text link
    This review examines intermittent target search strategies, which combine phases of slow motion, allowing the searcher to detect the target, and phases of fast motion during which targets cannot be detected. We first show that intermittent search strategies are actually widely observed at various scales. At the macroscopic scale, this is for example the case of animals looking for food ; at the microscopic scale, intermittent transport patterns are involved in reaction pathway of DNA binding proteins as well as in intracellular transport. Second, we introduce generic stochastic models, which show that intermittent strategies are efficient strategies, which enable to minimize the search time. This suggests that the intrinsic efficiency of intermittent search strategies could justify their frequent observation in nature. Last, beyond these modeling aspects, we propose that intermittent strategies could be used also in a broader context to design and accelerate search processes.Comment: 72 pages, review articl

    How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Get PDF
    A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites: Payerne (Switzerland), Bilthoven (the Netherlands), Lindenberg (north-eastern Germany), and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The trajectories qualitatively explain the temporal evolution of the intrusion layers above the four stations participating in the campaign

    Multicenter Evaluation of Independent High-Throughput and RT-qPCR Technologies for the Development of Analytical Workflows for Circulating miRNA Analysis.

    Full text link
    BACKGROUND:Among emerging circulating biomarkers, miRNA has the potential to detect lung cancer and follow the course of the disease. However, miRNA analysis deserves further standardization before implementation into clinical trials or practice. Here, we performed international ring experiments to explore (pre)-analytical factors relevant to the outcome of miRNA blood tests in the context of the EU network CANCER-ID. METHODS:Cell-free (cfmiRNA) and extracellular vesicle-derived miRNA (EVmiRNA) were extracted using the miRNeasy Serum/Plasma Advanced, and the ExoRNeasy Maxi kit, respectively, in a plasma cohort of 27 NSCLC patients and 20 healthy individuals. Extracted miRNA was investigated using small RNA sequencing and hybridization platforms. Validation of the identified miRNA candidates was performed using quantitative PCR. RESULTS:We demonstrate the highest read counts in healthy individuals and NSCLC patients using QIAseq. Moreover, QIAseq showed 15.9% and 162.9% more cfmiRNA and EVmiRNA miRNA counts, respectively, in NSCLC patients compared to healthy control samples. However, a systematic comparison of selected miRNAs revealed little agreement between high-throughput platforms, thus some miRNAs are detected with one technology, but not with the other. Adding to this, 35% (9 of 26) of selected miRNAs in the cfmiRNA and 42% (11 of 26) in the EVmiRNA fraction were differentially expressed by at least one qPCR platform; about half of the miRNAs (54%) were concordant for both platforms. CONCLUSIONS:Changing of (pre)-analytical methods of miRNA analysis has a significant impact on blood test results and is therefore a major confounding factor. In addition, to confirm miRNA biomarker candidates screening studies should be followed by targeted validation using an independent platform or technology

    Minimum length effects in black hole physics

    Full text link
    We review the main consequences of the possible existence of a minimum measurable length, of the order of the Planck scale, on quantum effects occurring in black hole physics. In particular, we focus on the ensuing minimum mass for black holes and how modified dispersion relations affect the Hawking decay, both in four space-time dimensions and in models with extra spatial dimensions. In the latter case, we briefly discuss possible phenomenological signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues
    corecore