47 research outputs found

    Data Multiplexing in Radio Interferometric Calibration

    Get PDF
    New and upcoming radio interferometers will produce unprecedented amounts of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers (ADMM) with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full dataset using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full dataset when a limited number of compute agents are available.Comment: MNRAS Accepted 2017 November 28. Received 2017 November 28; in original form 2017 July 0

    Processing Radio Astronomical Data Using the PROCESS Software Ecosystem

    Get PDF
    In this paper we discuss our efforts in "unlocking" the Long Term Archive (LTA) of the LOFAR radio telescope using the software ecosystem developed in the PROCESS project. The LTA is a large (>50 PB) archive that expands with about 7 PB per year by the ingestion of new observations. It consists of coarsely calibrated "visibilities", i.e. correlations between signals from LOFAR stations. Converting these observations into sky maps (images), which are needed for astronomy research, can be challenging due to the data sizes of the observations and the complexity and compute requirements of the software involved. Using the PROCESS software environment and testbed, we enable a simple point-and-click-reduction of LOFAR observations into sky maps for users of this archive. This work was performed as part of the PROCESS project which aims to provide generalizable open source solutions for user friendly exascale data processing

    matchms - processing and similarity evaluation of mass spectrometry data

    Get PDF
    Mass spectrometry data is at the heart of numerous applications in the biomedical and lifesciences. With growing use of high-throughput techniques, researchers need to analyze largerand more complex datasets. In particular through joint effort in the research community,fragmentation mass spectrometry datasets are growing in size and number. Platforms such asMassBank (Horai et al., 2010), GNPS (Wang et al., 2016) or MetaboLights (Haug et al., 2020)serve as an open-access hub for sharing of raw, processed, or annotated fragmentation massspectrometry data. Without suitable tools, however, exploitation of such datasets remainsoverly challenging. In particular, large collected datasets contain data acquired using differentinstruments and measurement conditions, and can further contain a significant fraction ofinconsistent, wrongly labeled, or incorrect metadata (annotations)

    The LOFAR Transients Pipeline

    Get PDF
    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been designed to meet them. We describe its implementation, including both the algorithms adopted to maximize performance as well as the development methodology used to ensure it is robust and reliable, particularly in the presence of artefacts typical of radio astronomy imaging. Finally, we report on a series of tests of the pipeline carried out using simulated LOFAR observations with a known population of transients.Comment: 30 pages, 11 figures; Accepted for publication in Astronomy & Computing; Code at https://github.com/transientskp/tk
    corecore