

 University of Groningen

Data multiplexing in radio interferometric calibration
Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L.V.E.

Published in:
Monthly Notices of the Royal Astronomical Society

DOI:
10.1093/mnras/stx3130

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Yatawatta, S., Diblen, F., Spreeuw, H., & Koopmans, L. V. E. (2018). Data multiplexing in radio
interferometric calibration. Monthly Notices of the Royal Astronomical Society, 475(1), 708-715. DOI:
10.1093/mnras/stx3130

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-11-2018

https://doi.org/10.1093/mnras/stx3130
https://www.rug.nl/research/portal/en/publications/data-multiplexing-in-radio-interferometric-calibration(b71fbafd-4c5e-41cf-a2f0-485425e7e220).html

MNRAS 475, 708–715 (2018) doi:10.1093/mnras/stx3130
Advance Access publication 2017 December 5

Data multiplexing in radio interferometric calibration

Sarod Yatawatta,1‹ Faruk Diblen,2 Hanno Spreeuw2 and L. V. E. Koopmans3

1ASTRON, Postbus 2, NL-7990 AA Dwingeloo, the Netherlands
2Netherlands eScience Center, Science Park 140, NL-1098 XG Amsterdam, the Netherlands
3Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands

Accepted 2017 November 28. Received 2017 November 28; in original form 2017 July 6

ABSTRACT
New and upcoming radio interferometers will produce unprecedented amount of data that
demand extremely powerful computers for processing. This is a limiting factor due to the large
computational power and energy costs involved. Such limitations restrict several key data
processing steps in radio interferometry. One such step is calibration where systematic errors
in the data are determined and corrected. Accurate calibration is an essential component in
reaching many scientific goals in radio astronomy and the use of consensus optimization that
exploits the continuity of systematic errors across frequency significantly improves calibration
accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simul-
taneously. In the SKA regime, this can become intractable if the available compute agents
do not have the resources to process data from all frequency channels simultaneously. In this
paper, we propose a multiplexing scheme that is based on the alternating direction method of
multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate
the full data set using far fewer compute agents than the number of frequencies at which data
are available. We give simulation results to show the feasibility of the proposed multiplexing
scheme in simultaneously calibrating a full data set when a limited number of compute agents
are available.

Key words: instrumentation: interferometers – Methods: numerical – Techniques: interfero-
metric.

1 IN T RO D U C T I O N

In order to reach many scientific goals of modern radio astron-
omy, large amounts of interferometric data need to be collected
to enable the detection of weak signals buried in the data. As a
consequence, modern radio interferometers produce ever increas-
ing amount of data. A case in point is the Square Kilometre Array
(SKA; Dewdney et al. 2009) that is poised to surpass most existing
radio interferometers in terms of data output. Interferometric data
in raw form are affected by systematic errors such as the receiver
beam and the Earth’s atmosphere. These errors are determined and
corrected during calibration. Calibration of a typical SKA type data
set is a heavily compute intensive task because the systematic errors
vary with time, frequency and direction (position in the sky). The
accuracy of calibration is paramount in the recovery of faint signals
of scientific interest. In order to improve the accuracy, we can ex-
ploit the continuity of systematic errors across frequency. With the
use of consensus optimization (Boyd et al. 2011; Yatawatta 2015;
Brossard et al. 2016), it has been shown that calibration can be
improved and results based on real observations (Patil et al. 2017)

� E-mail: yatawatta@astron.nl

have already confirmed this. The systematic errors are modelled as
polynomials in frequency and this model is used as a regularization
term in calibration. In order to get the best benefit of consensus
optimization, we need to simultaneously calibrate all the data avail-
able at all frequencies. In a situation where the number of available
compute agents is much less than the number of frequencies at
which data are available, this may become problematic. Similar
problems have been encountered in radio interferometric imaging
where the simultaneous use of all available data is a daunting task for
which multiple solutions have been proposed (Deguignet et al. 2016;
Meillier, Bianchi & Hachem 2016; Onose et al. 2016; Onose,
Dabbech & Wiaux 2017).

We consider a situation where we have P data sets distributed
over C compute agents as in Fig. 1. Each data set will have data at
one or more contiguous frequencies and we uniquely identify each
data set by its central frequency. We assume that each compute
agent can process only a single data set at a time, due to resource
limitations (e.g. RAM,1 CPU,2 GPU3). Because of this assumption,

1 Random access memory.
2 Central processing unit.
3 Graphics processing unit.

C© 2017 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

mailto:yatawatta@astron.nl

Data multiplexing in calibration 709

Figure 1. Data are distributed across C compute agents that are connected
to the fusion centre via a network. The total number of data sets (P) is larger
than the number of available compute agents (C). Each data set will have
one or more frequency channels and the central frequencies f1, f2, . . . , fP
uniquely identify each data set.

in our previous work (Yatawatta 2015), we restricted the number of
data sets simultaneously processed to match the number of available
compute agents. When P � C, this implies only processing C data
sets together (which we call as a comb) to reach consensus and
repeating this until we have processed all P data sets. However,
using all P data sets together to reach consensus is better than using
multiple combs of size C. One way to process all P data sets together,
when P � C, is sequential processing, where each compute agent
uses its resources to sequentially process the data, and consensus is
reached using all P data sets. Sequential processing will be slower
than processing a single comb, but will give better results. In this
paper, we try to achieve the improved result of sequential processing
of all P data sets, but with only spending the computational time
required to process a single comb of C data sets. In order to do this,
we propose a data multiplexing scheme.

Noting that calibration is a non-convex optimization problem,
we follow Hong, Luo & Razaviyayn (2015, 2016), where the au-
thors propose a flexible alternating direction method of multipliers
(ADMM) algorithm. Only a subset of the available data is chosen
for processing at each ADMM iteration, which is done in a cyclic
manner (each slave cycles through the data one-by-one, also see
Section 3.4). The crucial point in multiplexing is the selection of
the penalty parameter, and as proposed by Hong et al. (2015, 2016),
the penalty needs to be as large as possible. However, unlike in
other applications, consensus is achieved based on a model that
does not represent the systematic errors with full accuracy. For in-
stance, a simple phase screen will not represent ionospheric errors
with sufficient accuracy beyond a certain threshold (Martin, Bray
& Scaife 2016). The addition of beam errors (Mort et al. 2017)
confound this and systematic errors across a wide field of view
cannot be guaranteed to be accurately represented by the consensus
polynomials chosen in calibration. Therefore, selecting a penalty
parameter that is too high will also give poor results due to the
incomplete description of the systematic errors. Hence, we use an
adaptive strategy to select the penalty parameter at each ADMM
iteration. We base this on the Barzilai–Borwein method (Barzilai &
Borwein 1988) as proposed by Xu et al. (2016a,b, 2017). The cyclic
selection of different frequencies as in Hong et al. (2016) and the
adaptive update of the penalty parameter of each selected data set
as in Xu et al. (2016a) are combined in this paper. The initialization
of the penalty is done using the Hessian of the cost function as pro-
posed by Yatawatta (2016). We use the minimum description length

(MDL; Barron, Rissanen & Yu 2006) as a criterion for selecting the
consensus polynomials.

The rest of the paper is organized as follows. In Section 2, we give
an overview of direction-dependent calibration using consensus op-
timization. In Section 3, we introduce the data multiplexing scheme,
starting with criteria for selecting the consensus polynomials (Sec-
tion 3.1), initialization of the penalty parameter (Section 3.2), and
adaptive update of the penalty (Section 3.3). In Section 4, we give
results based on simulations of an SKA-like telescope (with 512 sta-
tions) to demonstrate the performance of the proposed multiplexing
scheme.

Notation: upper case bold letters refer to matrices (e.g. C). Unless
otherwise stated, all parameters are complex numbers. The set of
complex numbers is given as C and the set of real numbers as R.
The matrix pseudo-inverse, transpose, and Hermitian transpose are
referred to as (.)†, (.)T and (.)H, respectively. The identity matrix (of
size N × N) is given by IN. The Frobenius norm is given by ‖.‖ and
the cardinality of a set F is given by |F |.

2 D I R E C T I O N - D E P E N D E N T R A D I O
I N T E R F E RO M E T R I C C A L I B R AT I O N

We give a concise overview of direction-dependent calibration
with consensus optimization in this section. A more comprehen-
sive overview is given in our previous work (Yatawatta 2015;
Yatawatta 2016).

2.1 Data model

We consider a radio interferometric array with N dual-polarized
receivers. The sky is composed of many discrete sources and we
consider calibration along K directions in the sky. The observed
data at a baseline formed by two receivers, p and q (∈ [1, N]), at
frequency f is given by Hamaker, Bregman & Sault (1996)

V(pqf) =
K∑

k=1

Jpkf Cpqkf JH
qkf + Npqf , (1)

where V(pqf) (∈ C
2×2) is the observed visibility matrix (or the

cross-correlations) at frequency f. The systematic errors that need
to be calibrated for stations p and q are given by the Jones matrices
Jpkf , Jqkf (∈ C

2×2), respectively. As calibration is performed along
K directions, each station has K Jones matrices associated with
it (KN in total for the full array). The uncorrupted sky signal (or
coherency) along the k-th direction is given by Cpqkf (∈ C

2×2) and
is known a priori (Thompson, Moran & Swenson 2001). The values
of Jpkf , Jqkf and Cpqkf in (1) are implicitly dependent on sampling
time and frequency of the observation. However, their variation with
f is generally assumed to be smooth and enables the use of consensus
optimization. The noise matrix Npqf (∈ C

2×2) is assumed to have
complex, zero mean, circular Gaussian elements.

We use the space alternating generalized expectation maximiza-
tion (SAGE) algorithm (Fessler & Hero 1994; Kazemi et al. 2011) to
estimate Jpkf for all possible values of p and k in (1). This reduces
the computational cost and also improves the accuracy (Kazemi
et al. 2011). Calibration along the k-th direction is done by using
the effective observed data along the k-th direction

Vk
pqf = V(pqf) −

K∑
l=1,l �=k

Ĵplf Cpqlf Ĵ
H

qlf , (2)

MNRAS 475, 708–715 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

710 S. Yatawatta et al.

which is calculated using current estimates Ĵplf and Ĵqlf . This is
in fact the expectation step of the SAGE algorithm. The maximiza-
tion step of the SAGE algorithm involves minimizing the objective
function for the k-th direction defined under a Gaussian noise model
as

gkf (J1kf , J2kf , . . .) =
∑
p,q

‖Vk
pqf − Jpkf Cpqkf JH

qkf ‖2. (3)

The summation in (3) is over all the baselines pq that are included
in a finite time and frequency interval within which the systematic
errors are estimated. It is also possible to modify the objective
function for non-Gaussian noise models as in Kazemi & Yatawatta
(2013), Ollier et al. (2017) and Grobler et al. (2014).

By using the SAGE algorithm, we are able to separate calibration
along K directions to K-independent calibration problems. There-
fore, for the sake of simplicity, we drop k from here onwards and
rewrite the objective function (3) for any general direction as

gf (Jf) =
∑
p,q

‖Vpqf − ApJf Cpqf (AqJf)H ‖2, (4)

where Jf (∈ C
2N×2) is the augmented matrix of Jones matrices for

all stations along the k-th direction

Jf
�= [

JT
1kf , JT

2kf , . . . , JT
Nkf

]T
, (5)

and Ap (∈ R
2×2N) (and Aq likewise) is the canonical selection

matrix

Ap
�= [0, 0, . . . , I2, . . . , 0]. (6)

Note that only the p-th block of (6) is an identity matrix. To sum up,
in direction-dependent calibration along K directions using data at
frequency f, we solve K subproblems of minimizing (4).

2.2 Consensus optimization

Consider P data sets distributed across a network of C compute
agents as in Fig. 1. Rather than calibrating each data set individually,
we use consensus optimization to exploit the continuity of Jf with
f to get an improved result. As introduced in Yatawatta (2015)
and Yatawatta (2016), we use ADMM algorithm for consensus
optimization. We construct the augmented Lagrangian at the n-th
ADMM iteration as

Lf (Jn
f ,Zn,Yn

f , ρn
f)

= gf (Jn
f) + ‖ (

Yn
f

)H
(Jn

f − Bf Zn)‖ + ρn
f

2
‖Jn

f − Bf Zn‖2, (7)

where we have used the superscript (·)n to indicate the ADMM
iteration number (n = 1, 2, . . .) and the subscript (·)f denotes data
(and parameters) at frequency f. The original cost function gf (Jn

f) is
given by (4). The Lagrange multiplier is given by Yn

f (∈ C
2N×2). The

continuity in frequency is enforced by the frequency model given
by Bf (∈ R

2N×2NF), which is essentially a set of basis functions in
frequency, evaluated at f. The number of terms used in each basis
function is given by F. The global variable Zn (∈ C

2NF×2) is shared
by data at all P frequencies. The essential difference in (7) from our
previous work is that we have the penalty ρn

f to be variable both
with n and f.

An ADMM iteration for solving (7) is composed of three steps:

(Jf)n+1 = arg min
J

Lf (J, (Z)n, (Yf)n, ρn
f) (8)

(Z)n+1 = arg min
Z

∑
f

Lf ((Jf)n+1,Z, (Yf)n, ρn
f) (9)

(Yf)n+1 = (Yf)n + ρn
f

(
(Jf)n+1 − Bf (Z)n+1

)
(10)

that are executed in sequence. Summation across all frequencies at
which data are available is denoted by

∑
f. The steps (8) and (10)

are done for each f in parallel. The update of the global variable
(9) is done at the fusion centre. More details of these steps can be
found in Yatawatta (2015). In addition to the steps (8), (9) and (10),
we also extend (Yatawatta, Diblen & Spreeuw 2017) to update ρn

f ,
which is described in Section 3.3.

The ADMM iterations (8, 9, 10) are initialized as follows.

(i) Normally J1
f is initialized using solutions obtained for the

previous time interval, or using blocks of identity matrices I2.
(ii) The Lagrange multiplier Y1

f is set to 0.
(iii) Since Z is estimated in closed form, no initialization is nec-

essary.
(iv) We will discuss the initialization of the penalty ρ1

f in
Section 3.2.

Even though all C compute agents calibrate data in parallel, we
assume that due to compute resource limitations, only one prob-
lem of type (8) can be solved at any time. We consider P � C
and introduce a multiplexing scheme in Section 3.4 to handle this
situation.

3 DATA MULTI PLEXI NG

We assume that the P data sets are (approximately) evenly divided
among the C compute agents, in no particular order. The key point
of the data multiplexing scheme is to achieve consensus (9) using
all P data sets, regardless of the value of C. We describe various
aspects of the proposed multiplexing scheme in the following text.

3.1 Selection of the consensus polynomial model

The consensus polynomial functions used to construct Bf in (7) are
determined in advance. Given a choice of different polynomials, in
particular with a varying number of terms F, we can use the MDL
(Barron et al. 2006) to select the best polynomial model to use. Let
one possible polynomial configuration (with F̃ number of terms)

construct B̃f = b̃
T

f ⊗ I2N (∈ R
2N×2F̃N) at frequency f using b̃f ∈

R
F̃×1 that represent the values of the F̃ basis functions evaluated

at f. Let the current solution be J̃f , which can be the solution after
the first ADMM iteration (which is essentially the solution without
consensus). We calculate the residual sum of squares (RSS) for this
solution as

RSS = 1

8N

∑
f

ρf ‖J̃f − B̃f Z‖2, (11)

where we have calculated the RSS per parameter (because J̃f ∈
C

2N×2 thus includes 8N real parameters). Using the RSS, we find
the MDL as

MDL = P

2
log

(
RSS

P

)
+ F̃

2
log (P) (12)

and select the consensus polynomials (in particular F̃) that give the
minimum of (12).

MNRAS 475, 708–715 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

Data multiplexing in calibration 711

3.2 Initialization of the penalty parameter

The original cost function (4) is non-convex and therefore its Hes-
sian matrix is not positive definite. However, by carefully selecting
the penalty parameter ρ f, we might be able to make the Hessian
matrix of the augmented Lagrangian (8) positive definite. Fur-
thermore, the convergence of ADMM also depends on ρ f (Hong
et al. 2015, 2016). The construction of the full Hessian matrix is
computationally prohibitive. Therefore, we use the Hessian opera-
tor of the cost function (4), which is given by Yatawatta (2015) and
Yatawatta (2013a) as

Hessf

(
gf (J), J, η

)
=

∑
p,q

(
AT

p

(
(Vpqf − ApJCpqf JHAT

q) Aqη

− Ap(JCpqf ηH + ηCpqf JH)AT
q AqJ

)
CH

pqf

+ AT
q

(
(Vpqf − ApJCpqf JHAT

q)HApη

− Aq (JCpqf ηH + ηCpqf JH)HAT
pApJ

)
Cpqf

)
, (13)

where η ∈ C
2N×2, Hessf

(
gf (J), J, η

) ∈ C
2N×2. Note that η is a

matrix that spans the tangent space of the manifold [on which the
minima of gf(J) lie] at J.

To investigate the positive definiteness of the Hessian, we need
to find the smallest eigenvalue of (13). Since we have a non-
convex cost function, the smallest eigenvalue is negative. As there
is no closed form solution for the smallest eigenvalue, we use
an iterative approach. First, we define a cost function h(η) as
(Yatawatta 2016)

h(η)
�= 1

2
trace

(
ηH Hessf

(
gf (J), J, η

)
+ HessH

f

(
gf (J), J, η

)
η
)

(14)

and we find the smallest eigenvalue λ by solving

λ =min
η h(η)

subject to ηH η = I2. (15)

There are several ways to solve (15). In our case, noting that the
constraint ηH η = I2 makes the minimization of (14) restricted on to
a complex Stiefel manifold (Absil, Mahony & Sepulchre 2008),
we use the Riemannian trust region method (Absil, Baker &
Gallivan 2007; Boumal et al. 2014). The gradient and Hessian of
h(η) are required to perform this optimization and are given as

grad (h(η), η) = Hessf

(
gf (J), J, η

)
(16)

and

Hess (h(η), η, ζ) = Hessf

(
gf (J), J, ζ

)
, (17)

where ζ (∈ C
2N×2) is a matrix that spans the tangent space at η of

the Stiefel manifold.
Note that the calibration solutions, i.e. J are kept constant in (14).

We use the estimated solutions with ρ f set to zero and set this as
J in (14). Once we have found the smallest eigenvalue, i.e. λ, we
use this as a guideline to select ρ f. The Hessian of the augmented
Lagrangian (7) is given as

Hessf

(
Lf (J,Z,Yf , ρf), J, η

) = Hessf

(
gf (J), J, η

) + ρf

2
η,

(18)

where η ∈ C
2N×2 has a similar definition as in (13). So the Hessian

of (8) has the smallest eigenvalue λ + ρ f/2 where λ is the smallest
eigenvalue of (13). By increasing ρ f > 2|λ|, we can make the
minimization (8) convex. However, this also means that the penalty
is given more precedence than the actual cost function (4). If the
consensus polynomial chosen does not represent the systematic
errors entirely accurately, increasing ρ f larger than 2|λ| will lead
to degraded performance as shown by Yatawatta (2016). Therefore,
we initialize ρ f to a fraction of |λ|, e.g. ρ1

f = |λ|/10 and use |λ| as
an upper limit for ρ f in the adaptive update of ρ f as described in
Section 3.3.

The aforementioned initialization of ρ f is described for one di-
rection out of K directions. Although it is possible to solve (15)
for each direction individually, it is much easier to scale the initial
value of ρ f obtained for one direction to match other directions.
Consider a rescaling of the model flux in (4), i.e. Cpqf is rescaled
to κCpqf, where κ is a positive scale factor. In this case, the solu-
tions Jf in (4) are scaled to 1√

κ
Jf . Consequently, the penalty term

ρn
f

2 ‖Jn
f − Bf Zn‖2 in (7) is also scaled by 1

κ
. Therefore, to get back

the same penalty, we need to rescale ρ f to κρ f. In other words, the
penalty is scaled linearly with the scaling of sky model flux. Now
consider rescaling of data Vpqf in (4) to ωVpqf, where ω is a pos-
itive scale factor. In this case, the solutions Jf in (4) are scaled to√

ωJf and all terms (both the cost function and the penalty term) in
(7) are scaled by ω. Therefore, in this case, no adjustment of ρ f is
necessary.

In summary, the initialization of ρ f for one selected direction
(out of K) is done by first determining the smallest eigenvalue of
the Hessian, and using the magnitude of this as the upper bound
for ρ f. For the other K − 1 directions, the initial values of ρ f are
chosen by linear scaling according to the sky model flux. To min-
imize the extra compute overhead, the determination of ρ f need
only be performed once for many calibration runs and, where
appropriate, can be rescaled to obtain penalty factors for other
scenarios.

3.3 Adaptively updating the penalty parameter

In order to increase the convergence rate of ADMM, we update the
penalty parameter at each ADMM iteration. Recent work by Xu,
Figueiredo & Goldstein (2016b) and Xu et al. (2017) has shown that
by using the Barzilai–Borwein (Barzilai & Borwein 1988) method,
ADMM can be accelerated in most practical applications. In partic-
ular, for non-convex cost functions, Xu et al. (2016a) have shown
that this adaptive update gives better results. Motivated by this,
we use the same strategy in calibration. We have also compared
another popular method for the update of ρ f, which is called resid-
ual balancing (He, Yang & Wang 2000). However, we have found
that (Yatawatta et al. 2017) residual balancing is not stable in our
case (also found in recent work by Wohlberg 2017). We update the
penalty only if we are confident of the performance improvement
of ADMM with the update. One way of controlling the update is
to use the |λ| obtained in (15) as an upper bound for the updated
value of ρ f. We refer to this upper bound as ρ in the following
text.

The update of ρ f at the n-th ADMM iteration is done according
to algorithm 1. Prior to this update, (8) should be done at each slave
and (9) should be done at the fusion centre. The update of ρ f is done
after (10) at each slave. Additional variables used at each slave are

Ŷ
0

f , Ŷf , Ĵ
0

f ∈ C
2N×2.

MNRAS 475, 708–715 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

712 S. Yatawatta et al.

Algorithm 1 Spectral penalty update at the n-th ADMM iteration
for data at frequency f

Require: Steps (8), (9) and (10) have been performed to obtain

(Jf)n+1. Local variables Ŷ
0

f , Ŷf , Ĵ
0

f ∈ C
2N×2 are needed for

each f (and evolve with ADMM iterations). Upper bound for
penalty is ρ and α ∈ (0, 1] is a threshold parameter.

1: if n = 1 then
2: Initialize Ŷ

0

f := (Jf)1

3: end if
4: if n is an iteration where ρf is updated then
5: (Ŷf)n+1 := (Yf)n + ρn

f

(
(Jf)n+1 − Bf (Z)n

)
6:
Yf := (Ŷf)n+1 − Ŷ

0

f ,
Jf := (Jf)n+1 − Ĵ
0

f

7: δ11 := trace
(
Real

(

YH

f
Yf

))
8: δ12 := trace

(
Real

(

YH

f
Jf

))
9: δ22 := trace

(
Real

(

JH

f
Jf

))
10: α := δ12√

δ11δ22
, αSD := δ11

δ12
, and αMG := δ12

δ22

11: α̂ :=
{

αMG if 2αMG > αSD

αSD − αMG

2 otherwise

12: ρn+1
f :=

{
α̂ if α̂ ≤ ρ and α ≥ α

ρn
f otherwise

13: Ŷ
0

f := (Ŷf)n+1 and Ĵ
0

f := (Jf)n+1

14: end if

Some remarks about algorithm 1 are as follows.

(i) Local variables used (that do not live through ADMM iter-
ations) are
Yf ,
Jf ∈ C

2N×2, δ11, δ12, δ22, α, α̂, αSD, αMG ∈ R.
The subscripts SD and MG denote steepest descent and minimum
gradient, respectively (Zhou, Gao & Dai 2006).

(ii) Line 4: the penalty update is not performed at each ADMM
iteration, Xu et al. (2017) suggest updating at T periodic values of
n, where T ≥ 2.

(iii) Line 5: this update is different from (10) because (Z)n is
used in the former and (Z)n + 1 is used in the latter. Therefore, the
fusion centre needs to temporarily store the old value of Z at each
iteration.

(iv) Line 12: the threshold α ∈ (0, 1] is used to ensure that the
changes in the Lagrange multiplier
Yf and solutions
Jf on line 6
are sufficiently correlated (or have a positive direction cosine). We
use α = 0.2 as in Xu et al. (2017) and by increasing this value, we
can restrict the chances of spurious updates.

(v) Line 13: Ŷ
0

f and Ĵ
0

f are updated for use during the next update
of ρ f.

The additional computational cost needed to perform the adaptive
update of ρ f is mostly due to three linear operations (lines 5 and 6)
and three inner products (lines 7, 8 and 9), all involving matrices
in C

2N×2. In addition, there is increased network communication
overhead because the updated values of ρ f have to be passed to the
fusion centre and also because of the additional update on line 5
where Bf(Z)n has to be sent from the fusion centre to each slave.

3.4 Cyclic ADMM with data multiplexing

We first introduce the concept of a cyclic buffer. Let F contain a set
of real numbers (e.g. F = {f1, f2, f3}) that in our case correspond
to a set of frequencies. Consider a function First(F): Every time
First(·) is applied on F , it will return the first entry of F and move
this first entry to the last position of F . So if F = {f1, f2, f3},

repeatedly calling First(·) on F will give us f1, f2, f3, f1, f2, . . . , in
other words First(F) will give us the elements in F repeatedly, in a
cyclic manner.

We use a cyclic buffer to represent the data locally available
to each slave, assuming each data set is uniquely identified by its
frequency (or central frequency if each data set contains more than
one channel). For example, if slave i has data at frequencies {f1, f2,
f3} locally available, we use Fi = {f1, f2, f3} where Fi is a cyclic
buffer. With the use of a cyclic buffer, we give the pseudo-code for
cyclic ADMM in algorithm 2.

Algorithm 2 Cyclic ADMM with data multiplexing
Require: Fi (⊂ {f1, f2, . . . , fP }) is a cyclic buffer that represent

the data being calibrated by slave i. Wi is a set of frequencies of
the data being calibrated during one ADMM iteration by slave
i. M is the maximum number of ADMM iterations. T (≥2) is an
integer that determines the periodicity of the penalty parameter
update.

1: Randomly permute Fi

2: for n = 1, . . . , M do
3: if n = 1 or n = M then
4: Wi := Fi

5: else
6: Wi := First(Fi)
7: end if
8: for i = 1, . . . , C in parallel do
9: Perform (8) ∀f ∈ Wi

10: end for
11: Perform (9) at the fusion centre
12: for i = 1, . . . , C in parallel do
13: Perform (10) ∀f ∈ Wi

14: end for
15: for i = 1, . . . , C in parallel do
16: {Decide whether to update the penalty or not}
17: do update := 0 {Default is no update}
18: if |Fi | > 1 then
19: do update := 1
20: else if |Fi | = 1 and n > 1 and n is a multiple of T then
21: do update := 1
22: end if
23: if do update = 1 then
24: Perform algorithm 1 to update ρf ∀f ∈ Wi

25: end if
26: end for
27: end for

Some remarks on algorithm 2 are as follows.

(i) Line 1: the order of selection of data is randomized for each
calibration run. A typical observation will contain many time sam-
ples and for each time sample, the ordering of the frequencies of
the data calibrated by each slave is random.

(ii) Lines 4, 6: at the first and the last ADMM iterations, (8) and
(10) are performed on all available data, possibly in a sequential
manner. On the other hand, in all other ADMM iterations, only a
single data set is selected for performing these steps. Thus, depend-
ing on the ADMM iteration, Wi can point to all available data sets
for slave i or just one data set. Therein lies the multiplexing of data,
where in most ADMM iterations, each slave works on a single data
set.

(iii) Line 11: step (9) is performed at the fusion centre using
all frequencies, regardless of whether the data sets are selected by

MNRAS 475, 708–715 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

Data multiplexing in calibration 713

the slaves for processing or not. The flexible ADMM algorithm
presented in Hong et al. (2016) does not necessarily perform (9) at
each ADMM iteration. This in essence converts algorithm 2 to a
sequential processing version of ADMM with some delay.

(iv) Line 24: the penalty parameter update is only done on the
data at frequencies in Wi , so in most ADMM iterations, for just
one data set. Thus, the penalty update interval for any given data
set on slave i will be about |Fi |, which is generally larger than the
period T.

The performance of algorithm 2 depends on the value of C,
especially for solving (9). We investigate this dependence further
by using simulations in Section 4.

4 SI M U L ATI O N S

We give results based on simulations of an SKA-like telescope (with
N = 512 stations) in this section. The configuration of the stations is
similar to the one used by Mort et al. (2017) and the integration time
is 10 s. We simulate data at P = 24 different frequencies, spread in
the range 115–185 MHz, but note that in real observations, P could
be several hundred or more. The sky consists of K = 10 bright point
sources, spread across a field of view of 7 × 7 deg2, with peak fluxes
in the range [1.5, 10] Jy and another 6000 weak sources (which
are not known during calibration) with peak fluxes in the range
[0.01, 0.1] Jy. Systematic errors along the K directions are randomly
generated, with continuity across frequency created by an eight-
order ordinary polynomial in frequency and slow variability across
time. The 6000 weak sources are clustered (Kazemi, Yatawatta &
Zaroubi 2013) around the bright K sources and also corrupted by the
systematic errors of each cluster that it belongs to using (1). Finally,
complex circular white Gaussian noise is added to the simulated
data with a signal-to-noise ratio (ratio of signal power versus noise
power) of 10. The consensus polynomial (Bernstein basis functions)
has F = 3 terms that is chosen according to Section 3.1. Note that
this is well below the order of the polynomial that it used to generate
the errors.

During calibration, the 6000 weak sources are not used in the sky
model and thus they act as additional noise. The systematic errors
along the K directions are estimated at each of the P frequencies,
per each time sample of 10 s duration. In order to measure the per-
formance of calibration (in particular the convergence of ADMM),
we use the error between the ground truth value of Jf (per direction
and frequency) and its estimated value at the n-th ADMM iteration
Ĵ

n

f , calculated as 1√
4N

‖Jf − Ĵ
n

f U‖ with a proper unitary matrix U

(∈ C
2×2) (Yatawatta 2013b), and averaged over all K directions and

P frequencies. Additionally, we also calculate the primal residual
‖Jn

f − Bf Zn‖ and the dual residual ‖ρn
f Bf (Zn − Zn−1)‖ produced

in (8), (9) and (10), which are also averaged over all directions
and frequencies. The primal residual represents the error between
the systematic errors predicted by the global model and its local
estimate at each frequency. The dual residual represents the conver-
gence of the global model to a stable value.

We compare four calibration scenarios using the simulated data.
In all cases, the initial values of the penalty parameter is the same
and for a source with 1 Jy peak flux, the initial value we use for the
penalty is about 10 (determined according to Section 3.2 using data
at frequency 148 MHz) and this value is scaled according to the flux
for all K sources as described in Section 3.2. The four calibration
scenarios are as follows:

Figure 2. Variation of the error in solutions with ADMM iterations.

Figure 3. Variation of the primal residual with ADMM iterations.

(i) C = 24: calibration using C = P = 24 compute agents (no
multiplexing but adaptive update of penalty as in algorithm 1 with
T = 2).

(ii) C = 12 (multiplexing): calibration using C = 12 compute
agents (multiplexing as in algorithm 2).

(iii) C = 8 (multiplexing): calibration using C = 8 compute
agents (multiplexing as in algorithm 2).

(iv) C = 8 (no multiplexing): calibration using C = 8 compute
agents P/C = 3 times, (no multiplexing but with adaptive penalty
update as in algorithm 1 with T = 2) where each comb is made of
randomly selected data at C frequencies.

Note that scenario (i) with C = 24 is also equivalent to sequen-
tial processing of the P frequencies using fewer compute agents if
C < P. Scenario (iv) is described in Yatawatta (2015, but without
adaptive update of the penalty parameter) and this paper aims to im-
prove (Yatawatta 2015), but without the expenditure of additional
compute agents nor reverting to sequential processing.

The variation of the error in solutions with ADMM iteration n,
compared to the ground truth value is shown in Fig. 2. We see
that scenario (i) gives the fastest convergence and the lowest error.
Multiplexing with C = 12 and C = 8 (scenarios ii and iii) gives
increasingly slower convergence. On the other hand, scenario (iv)
where C = 8 and no multiplexing is done gives faster convergence
in the beginning, but reaches a higher error floor.

The primal and dual residuals are shown in Figs 3 and 4, respec-
tively. Out of these two, the dual residual variation in Fig. 4 shows

MNRAS 475, 708–715 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

714 S. Yatawatta et al.

Figure 4. Variation of the dual residual with ADMM iterations.

clear differences in the four calibration scenarios considered, which
can also explain the different convergence rates seen in Fig. 2. First,
we see that multiplexing leads to oscillatory behaviour of the dual
residual (and also of the primal residual to a lesser extent). This
can be explained by the selection of subsets of frequencies for pro-
cessing as in algorithm 2 at each ADMM iteration, thus leading to
a limit cycle. Secondly, in Fig. 4, between n ≈ 8 and n ≈ 20 we
see a marked difference in the dual residual between multiplexing
(scenarios ii and iii) and no multiplexing (scenarios i and iv). Higher
dual residuals mean faster convergence to the final value of Z and
we see that keeping the frequencies fixed to perform (9) enables
faster convergence to the final value of Z. However, because the
model Bf is incomplete, the final value of Z of each comb (sce-
nario iv) can converge to values different than the final value at
convergence using the full data (scenario i). This can also make the
primal residual lower for each comb for calibration scenario (iv),
which is seen in Fig. 3. This does not mean that the actual error
in solutions is lower for scenario (iv), as seen in Fig. 2. At the last
ADMM iteration, for scenarios (ii) and (iii), we see an increase in
the primal and dual residuals. This is because we use all available
data to reach consensus at the last ADMM iteration (see lines 3, 4
and 5 in algorithm 2). However, this does not increase the error in
solutions as seen in Fig. 2.

We draw several conclusions from Figs 2–4. First, calibration
using all available data (scenario i), either by using more compute
agents or by sequential processing, gives the best results. The con-
vergence of data multiplexing (scenarios ii and iii) is slower, mainly
because of the convergence of the global variable Z is slow. How-
ever, we can still get the desired accuracy albeit with more ADMM
iterations. The main advantage of scenarios (ii) and (iii) as opposed
to scenario (i) is the computational cost: either because it uses fewer
compute agents or because it requires less computations per each
ADMM iteration. To elaborate, consider the total cost required in
scenario (i) compared to scenario (iii): in scenario (i), we reach
the error floor in about 20 ADMM iteration while in scenario (iii),
this is about 40. However, scenario (iii) uses 1/3 compute agents
(or compute cycles in sequential processing). Therefore, the total
cost of scenario (iii) is 40/3 ≈ 14, which is less than in scenario
(i). Secondly, there is clear improvement in processing all available
data (with or without multiplexing as in scenarios i, ii and iii) com-
pared to processing subsets (or combs) of data as in scenario (iv). In
other words, it is possible to improve scenario (iv) without expend-
ing more computations by multiplexing, but multiplexing will not
necessarily give the best achievable result (scenario i). Moreover,

Figure 5. Variation of the error in solutions with ADMM iterations, for
fixed penalty parameter and for adaptive penalty parameter.

Figure 6. Variation of the penalty parameter ρ with ADMM iterations for
all 10 directions at one frequency. The initial values of ρ are scaled according
to the flux of the source being calibrated as described in Section 3.2. We see
that ρ update occurs at very few instances. Not all directions have updates
of ρ and the updates do not happen at the same ADMM iteration for all
directions.

the performance of multiplexing degrades as the amount of multi-
plexing increases, or as fewer compute agents are used to process
the same amount of data. This can be seen from comparing the
performance of scenario (ii) with scenario (iii).

The effect of the adaptive penalty update is subtle and we empha-
size that the penalty is updated only if the new value for the penalty
can be estimated with some confidence (that can be controlled by
the threshold α in 12). This is similar to the conclusions drawn
by Xu et al. (2016a). Therefore, in order to compare the effect of
the adaptive update of the penalty, we give a comparison of data
multiplexing (scenario iii) with and without the adaptive penalty
update (also see Yatawatta et al. 2017). We show the error in solu-
tions in Fig. 5, with fixed penalty and with adaptive update of the
penalty. Moreover, we show the variation of the penalty parameter
at one value of f for this example in Fig. 6. Note that in Fig. 6, the
initial value of the penalty is different for each of the K directions
(scaled according to the flux) and the variation of the penalty is also
different for each direction. None the less, as seen in Fig. 5, the
adaptive update of the penalty shows faster reduction in the error in
solutions.

Due to the increased number of stations (N = 512) and hence
the amount of data, an important issue that needs clarification is

MNRAS 475, 708–715 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

Data multiplexing in calibration 715

the computational cost of calibration. As shown by Kazemi et al.
(2011), the scaling of consensus optimization with the number of
directions being calibrated K is linear, mainly due to the use of
the SAGE algorithm. The scaling with the number of stations N
depends on the low-level optimization routine used in consensus
optimization. We use the Riemannian trust region algorithm (Absil
et al. 2007; Yatawatta 2013a) as the underlying optimization rou-
tine. In this algorithm, the linear optimization is done using the
truncated conjugate gradient method (Absil et al. 2007) with matri-
ces in C

2N×2, and therefore the direct solution of a linear system is
not needed. This algorithm scales linearly with N because the size
of matrices in C

2N×2 grows linearly with N. The dominating cost
is mostly due to the model Cpqf computation in (4) as well as com-
puting the cost function together with its gradient and the Hessian.
This needs to be done for each data point and the number of data
points scales as N2 (baselines), and linearly with K and P.

5 C O N C L U S I O N S

In order to simultaneously process data at a large number of fre-
quencies with a limited number of compute agents, we have pro-
posed a multiplexing scheme for consensus optimization. Based
on simulation results, we conclude that the multiplexing scheme
together with the adaptive update of the penalty parameter im-
proves the quality of direction-dependent calibration when the com-
pute resources are limited. The source code for the algorithms
described in this paper is available at http://sagecal.sf.net/ and
https://github.com/nlesc-dirac/sagecal where we have used the mes-
sage passing interface as our network communication framework.
Future work will focus on migrating these algorithms to big-data
frameworks such as Apache Spark.

AC K N OW L E D G E M E N T S

This work is supported by Netherlands eScience Center (project
DIRAC, grant 27016G05) and the European Research Council
(project LOFARCORE, grant 339743). We thank the anonymous
reviewer and Ronald Nijboer for valuable comments.

R E F E R E N C E S

Absil P.-A., Baker C. G., Gallivan K. A., 2007, Found. Comput. Math., 7,
303

Absil P.-A., Mahony R., Sepulchre R., 2008, Optimization Algorithms on
Matrix Manifolds. Princeton Univ. Press, Princeton, NJ

Barron A., Rissanen J., Yu B., 2006, IEEE Trans. Inf. Theor., 44, 2743
Barzilai J., Borwein J., 1988, IMA J. Numer. Anal., 8, 141
Boumal N., Mishra B., Absil P.-A., Sepulchre R., 2014, J. Mach. Learn.

Res., 15, 1455
Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., 2011, Found. Trends R©

Mach. Learn., 3, 1

Brossard M., El Korso M. N., Pesavento M., Boyer R., Larzabal P., Wijnholds
S. J., 2016, preprint (arXiv:1609.02448)

Deguignet J., Ferrari A., Mary D., Ferrari C., 2016, 24th European Signal
Processing Conference (EUSIPCO). EURASIP, p. 1483

Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L., 2009, Proc. IEEE,
97, 1482

Fessler J., Hero A., 1994, IEEE Trans. Signal Process., 42, 2664
Grobler T., Nunhokee C., Smirnov O., Van Zyl A., De Bruyn A., 2014,

MNRAS, 439, 4030
Hamaker J. P., Bregman J. D., Sault R. J., 1996, A&AS, 117, 96
He B. S., Yang H., Wang S. L., 2000, J. Optim. Theory Appl., 106, 337
Hong M., Luo Z.-Q., Razaviyayn M., 2015, IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, p. 3836
Hong M., Luo Z.-Q., Razaviyayn M., 2016, SIAM J. Optim., 26, 337
Kazemi S., Yatawatta S., 2013, MNRAS, 435, 597
Kazemi S., Yatawatta S., Zaroubi S., Labropoluos P., de Bruyn A., Koopmans

L., Noordam J., 2011, MNRAS, 414, 1656
Kazemi S., Yatawatta S., Zaroubi S., 2013, MNRAS, 430, 1457
Martin P. L., Bray J. D., Scaife A. M. M., 2016, MNRAS, 459, 3525
Meillier C., Bianchi P., Hachem W., 2016, 24th European Signal Processing

Conference (EUSIPCO). EURASIP, p. 728
Mort B., Dulwich F., Razavi-Ghods N., de Lera Acedo E., Grainge K., 2017,

MNRAS, 465, 3680
Ollier V., El Korso M. N., Boyer R., Larzabal P., Pesavento M., 2017, IEEE

Trans. Signal Process., 65, 5649
Onose A., Carrillo R. E., McEwen J. D., Wiaux Y., 2016, 24th European

Signal Processing Conference (EUSIPCO). EURASIP, p. 1448
Onose A., Dabbech A., Wiaux Y., 2017, MNRAS, 469, 938
Patil A. H. et al., 2017, ApJ, 838, 65
Thompson A., Moran J., Swenson G., 2001, Interferometry and Synthesis

in Radio Astronomy, 3rd edn. Wiley, New York
Wohlberg B., 2017, preprint (arXiv:1704.06209)
Xu Z., De S., Figueiredo M., Studer C., Goldstein T., 2016a, preprint

(arXiv:1612.03349)
Xu Z., Figueiredo M. A. T., Goldstein T., 2016b, preprint

(arXiv:1605.07246)
Xu Z., Taylor G., Li H., Figueiredo M., Yuan X., Goldstein T., 2017, preprint

(arXiv:1706.02869)
Yatawatta S., 2013a, IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, p. 3866
Yatawatta S., 2013b, MNRAS, 428, 828
Yatawatta S., 2015, MNRAS, 449, 4506
Yatawatta S., 2016, 24th European Signal Processing Conference (EU-

SIPCO). EURASIP, p. 265
Yatawatta S., Diblen F., Spreeuw H., 2017, 7th International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP) (IEEE CAMSAP 2017). IEEE

Zhou B., Gao L., Dai Y.-H., 2006, Comput. Optim. Appl., 35, 69

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 475, 708–715 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/708/4693867 by U
niversity G

roningen user on 21 N
ovem

ber 2018

http://sagecal.sf.net/
https://github.com/nlesc-dirac/sagecal
http://arxiv.org/abs/1609.02448
http://arxiv.org/abs/1704.06209
http://arxiv.org/abs/1612.03349
http://arxiv.org/abs/1605.07246
http://arxiv.org/abs/1706.02869

