36 research outputs found

    Modeling to predict factor VIII levels associated with zero bleeds in patients with severe hemophilia A initiated on tertiary prophylaxis

    Get PDF
    Background Factor VIII (FVIII) trough levels > 1 IU/dL in patients with severe hemophilia A receiving regular prophylaxis may optimize bleed protection. Objectives In this post hoc analysis of patients receiving tertiary prophylaxis for approximately 1 year, the relationship between estimated FVIII levels and reported bleeds was investigated to predict the potential for zero bleeds. Methods Sixty-three patients (median [range] age, 28 [7–59] years) with severe hemophilia A (229 bleeds) were included. FVIII levels at time of each bleed were estimated from single-dose individual pharmacokinetics. The highest estimated FVIII level at which patients experienced a bleed was considered the “potentially effective trough level” for that bleed type. Kaplan–Meier estimates of proportions of patients with no bleeds above certain estimated FVIII levels were determined. Those not experiencing a bleed in the trial were assumed to have a bleed at 0 IU/dL (pragmatic approach) or at their median trough level (conservative approach). Results Kaplan–Meier estimates based on pragmatic approach predicted zero all bleeds, joint bleeds, and spontaneous joint bleeds in 1 year in 40, 43, and 63% of patients, respectively, when the potentially effective trough FVIII level was set at 1 IU/dL. Between 1 and 10 IU/dL, every 1 IU/dL rise in estimated FVIII level was associated with an additional 2% of patients having zero all bleeds. Conclusion This post hoc analysis confirms benefits with trough levels of approximately 1 to 3 IU/dL in most patients starting tertiary prophylaxis; prophylaxis with higher trough levels may help patients to achieve zero bleeds

    Rapid Progressing Allele HLA-B35 Px Restricted Anti-HIV-1 CD8+ T Cells Recognize Vestigial CTL Epitopes

    Get PDF
    BACKGROUND: The HLA-B*35-Px allele has been associated with rapid disease progression in HIV-1 infection, in contrast to the HLA-B*35-Py allele. METHODOLOGY/PRINCIPAL FINDINGS: Immune responses to two HLA-B*35 restricted HIV-1 specific CTL epitopes and their variants were followed longitudinally during early HIV-1 infection in 16 HLA-B*35+ individuals. Subjects expressing HLA-B*35-Px alleles showed no difference in response to the consensus epitopes compared to individuals with HLA-B*35-Py alleles. Surprisingly, all the HLA-B*35-Px+ individuals responded to epitope-variants even in the absence of a consensus response. Sequencing of the viral population revealed no evidence of variant virus in any of the individuals. CONCLUSIONS/SIGNIFICANCE: This demonstrates a novel phenomenon that distinguishes individuals with the HLA-B*35-Px rapid progressing allele and those with the HLA-B*35-Py slower progressing allele

    T Cell Responses to Human Endogenous Retroviruses in HIV-1 Infection

    Get PDF
    Human endogenous retroviruses (HERVs) are remnants of ancient infectious agents that have integrated into the human genome. Under normal circumstances, HERVs are functionally defective or controlled by host factors. In HIV-1-infected individuals, intracellular defense mechanisms are compromised. We hypothesized that HIV-1 infection would remove or alter controls on HERV activity. Expression of HERV could potentially stimulate a T cell response to HERV antigens, and in regions of HIV-1/HERV similarity, these T cells could be cross-reactive. We determined that the levels of HERV production in HIV-1-positive individuals exceed those of HIV-1-negative controls. To investigate the impact of HERV activity on specific immunity, we examined T cell responses to HERV peptides in 29 HIV-1-positive and 13 HIV-1-negative study participants. We report T cell responses to peptides derived from regions of HERV detected by ELISPOT analysis in the HIV-1-positive study participants. We show an inverse correlation between anti-HERV T cell responses and HIV-1 plasma viral load. In HIV-1-positive individuals, we demonstrate that HERV-specific T cells are capable of killing cells presenting their cognate peptide. These data indicate that HIV-1 infection leads to HERV expression and stimulation of a HERV-specific CD8+ T cell response. HERV-specific CD8+ T cells have characteristics consistent with an important role in the response to HIV-1 infection: a phenotype similar to that of T cells responding to an effectively controlled virus (cytomegalovirus), an inverse correlation with HIV-1 plasma viral load, and the ability to lyse cells presenting their target peptide. These characteristics suggest that elicitation of anti-HERV-specific immune responses is a novel approach to immunotherapeutic vaccination. As endogenous retroviral sequences are fixed in the human genome, they provide a stable target, and HERV-specific T cells could recognize a cell infected by any HIV-1 viral variant. HERV-specific immunity is an important new avenue for investigation in HIV-1 pathogenesis and vaccine design

    Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection

    Get PDF
    Progressive loss of T cell functionality is a hallmark of chronic infection with human immunodeficiency virus 1 (HIV-1). We have identified a novel population of dysfunctional T cells marked by surface expression of the glycoprotein Tim-3. The frequency of this population was increased in HIV-1–infected individuals to a mean of 49.4 ± SD 12.9% of CD8+ T cells expressing Tim-3 in HIV-1–infected chronic progressors versus 28.5 ± 6.8% in HIV-1–uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1–infected inviduals correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4+ T cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1–specific CD8+ T cells. Tim-3–expressing T cells failed to produce cytokine or proliferate in response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-1–specific T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of HIV-1–associated T cell dysfunction

    Sequential Broadening of CTL Responses in Early HIV-1 Infection Is Associated with Viral Escape

    Get PDF
    BACKGROUND: Antigen-specific CTL responses are thought to play a central role in containment of HIV-1 infection, but no consistent correlation has been found between the magnitude and/or breadth of response and viral load changes during disease progression. METHODS AND FINDINGS: We undertook a detailed investigation of longitudinal CTL responses and HIV-1 evolution beginning with primary infection in 11 untreated HLA-A2 positive individuals. A subset of patients developed broad responses, which selected for consensus B epitope variants in Gag, Pol, and Nef, suggesting CTL-induced adaptation of HIV-1 at the population level. The patients who developed viral escape mutations and broad autologous CTL responses over time had a significantly higher increase in viral load during the first year of infection compared to those who did not develop viral escape mutations. CONCLUSIONS: A continuous dynamic development of CTL responses was associated with viral escape from temporarily effective immune responses. Our results suggest that broad CTL responses often represent footprints left by viral CTL escape rather than effective immune control, and help explain earlier findings that fail to show an association between breadth of CTL responses and viral load. Our results also demonstrate that CTL pressures help to maintain certain elements of consensus viral sequence, which likely represent viral escape from common HLA-restricted CTL responses. The ability of HIV to evolve to escape CTL responses restricted by a common HLA type highlights the challenges posed to development of an effective CTL-based vaccine

    Expansion of CD1d-restricted NKT cells in patients with primary HIV-1 infection treated with interleukin-2

    No full text
    Innate CD1d-restricted natural killer T (NKT) cells are infected and lost in HIV-1–infected patients, and this could contribute to HIV-1 pathogenesis because NKT cells play an important role in directing both adaptive and innate immunity. Administration of interleukin-2 (IL-2) to HIV-1–infected patients leads to substantial and sustained CD4+ T-cell expansion, involving both naive and memory cells. We investigated whether IL-2 treatment could restore the NKT cell compartment in patients with primary HIV-1 infection. We show that IL-2 combined with effective antiretroviral therapy (ART) resulted in significant expansion of CD1d-restricted NKT cells. Expansion occurred in both the CD4– and CD4+ subsets of NKT cells, and expanded cells expressed the CD161 maturation marker while expression of the HIV coreceptor CCR5 was reduced. These data indicate that IL-2 treatment in combination with effective ART is beneficial for the restoration of innate NKT cell immunity in patients with primary HIV-1 infection

    Postauthorization safety surveillance study of antihaemophilic factor (recombinant) reconstituted in 2 mL sterile water for injection in children with haemophilia A

    No full text
    International audienceIntroduction - Antihaemophilic factor (recombinant) (rAHF; ADVATE ) is approved for prophylaxis and treatment of bleeding in children and adults with haemophilia A. Reconstitution in 2 mL sterile water for injection instead of 5 mL allows for a 60% reduction in infusion volume and administration time, but could increase the likelihood of hypersensitivity and infusion-related reactions, especially in children. Aim - To assess local tolerability, safety and effectiveness of rAHF 2 mL during routine clinical practice factor VIII (FVIII) replacement (on-demand and prophylaxis) in children with severe (FVIII < 1%) or moderately severe (FVIII 1%-2%) haemophilia A. Methods - This was a prospective, non-interventional, postauthorization safety surveillance study (NCT02093741). Eligible patients were previously treated with rAHF and had a negative inhibitor test result during ≤10 exposure days prior to study entry. Results - Of 65 patients enrolled (0-11 years of age), 54 and 11 had severe and moderately severe haemophilia A, respectively; 56 patients received prophylaxis, and 11 had ≤50 exposure days, of which 4 had ≤4 exposure days. No patients reported local hypersensitivity reactions, treatment-related adverse events or developed inhibitors. Investigators rated overall effectiveness of rAHF 2 mL prophylaxis as excellent or good. Ninety-four bleeding events in 34 patients were treated. Haemostatic effectiveness was rated as excellent or good for 75.8% of bleeds; 86.2% of bleeds required 1 or 2 infusions. Conclusion - In children with severe/moderately severe haemophilia A, no hypersensitivity reactions were reported with rAHF 2 mL treatment, and the safety and effectiveness are consistent with data previously reported for rAHF 5 mL
    corecore