42 research outputs found

    Feldversuche zur verlustmindernden Wirkung von N-Stabilisatoren hinsichtlich Lachgas-Emissionen nach Harnstoff-Düngung zu Winterraps

    Get PDF
    Im vorliegenden Freilandversuch wurde die N2O-Emissionsdynamik bezüglich des Einsatzes eines Nitrifikationsinhibitors (NI) im Zusammenhang mit Harnstoffdüngung zu Winterraps unter praxisrelevanten Anbaubedingungen und unter besonderer Berücksichtigung der vegetativen- und reproduktiven- sowie Ernte und Nacherntephase über zwei Vegetationsperioden hinweg untersucht. Zentrales Ziel der Untersuchung war die Quantifizierung des N2O-Minderungspotentials durch NI-Einsatz bei Winterraps. Der N2O-Verlust nach HS-Düngung zu Winterraps lag mit max. 1,36 kg N / ha (0,44 %-Dünger-N) unter dem IPCC-Faktor von 1,0 %. Die Verwendung eines NI konnte die N2O-Verluste im Wirkungszeitraum bis zur Blüte deutlich verringern (81 bis 97%). Emissionen im Erntezeitraum (Jul bis Sep) basieren nicht direkt auf Dünger-Nmin, sondern dem Eintrag frischer Biomasse, welche bei Düngung systembedingt erhöht ist und nicht durch den frühjährlichen Einsatz eines NI minimiert werden kann. Die Gesamt-N2O-Minderungsbilanz bei Einsatz eines NI hängt maßgeblich vom N2O-Verlustpotential während der Düngungs- und Wachstumsphase sowie der (NI-unabhängigen) Stärke der N2O-Verluste während der Ernte- und Nacherntephase ab

    Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation

    Get PDF
    Expanding far beyond traditional applications in optical interconnects at telecommunications wavelengths, the silicon nanophotonic integrated circuit platform has recently proven its merits for working with mid-infrared (mid-IR) optical signals in the 2-8 {\mu}m range. Mid-IR integrated optical systems are capable of addressing applications including industrial process and environmental monitoring, threat detection, medical diagnostics, and free-space communication. Rapid progress has led to the demonstration of various silicon components designed for the on-chip processing of mid-IR signals, including waveguides, vertical grating couplers, microcavities, and electrooptic modulators. Even so, a notable obstacle to the continued advancement of chip-scale systems is imposed by the narrow-bandgap semiconductors, such as InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical currents. The cryogenic or multi-stage thermo-electric cooling required to suppress dark current noise, exponentially dependent upon the ratio Eg/kT, can limit the development of small, low-power, and low-cost integrated optical systems for the mid-IR. However, if the mid-IR optical signal could be spectrally translated to shorter wavelengths, for example within the near-infrared telecom band, photodetectors using wider bandgap semiconductors such as InGaAs or Ge could be used to eliminate prohibitive cooling requirements. Moreover, telecom band detectors typically perform with higher detectivity and faster response times when compared with their mid-IR counterparts. Here we address these challenges with a silicon-integrated approach to spectral translation, by employing efficient four-wave mixing (FWM) and large optical parametric gain in silicon nanophotonic wires

    Irinotecan in patients with relapsed or cisplatin-refractory germ cell cancer: a phase II study of the German Testicular Cancer Study Group

    Get PDF
    Despite generally high cure rates in patients with metastatic germ cell cancer, patients with progressive disease on first-line cisplatin-based chemotherapy or with relapsed disease following high-dose salvage therapy exhibit a very poor prognosis. Irinotecan has shown antitumour activity in human testicular tumour xenografts in nude mice. We have performed a phase II study examining the single agent activity of irinotecan in patients with metastatic relapsed or cisplatin-refractory germ cell cancer. Refractory disease was defined as progression or relapse within 4 weeks after cisplatin-based chemotherapy or relapse after salvage high-dose chemotherapy with autologous stem cell support. Irinotecan was administered at a dose of 300 (−350) mg m−2 every 3 weeks. Response was evaluated every 4 weeks. Fifteen patients have been enrolled. Median age was 35 (19–53) years. Primary tumour localisation was gonadal/mediastinal in 12/3 patients. Patients had been pretreated with a median of six (4–12) cisplatin-containing cycles and 13 out of 15 patients had previously failed high-dose chemotherapy with blood stem cell support. Median number of irinotecan applications was two (1–3). Fourteen patients are assessable for response and all for toxicity. In one patient, no adequate response evaluation was performed. Toxicity was generally acceptable and consisted mainly of haematological side effects with common toxicity criteria 3° anaemia (two patients), common toxicity criteria 3° leukocytopenia (one patient) and common toxicity criteria 3° thrombocytopenia (three patients). Common toxicity criteria 3/4° non-haematological toxicity occurred in five patients (33%): 1×diarrhoea, 2×alopecia, 1×fever and in one patient worsening of pre-existing peripheral polyneuropathy from 1° to 4°. No response was observed to irinotecan therapy. Currently, 13 patients have died of the disease and two patients are alive with the disease. The patients included in our study exhibit similar prognostic characteristics as patients treated in previous trials evaluating new drugs in this setting. Irinotecan at a dose of 300–350 mg m−2 every 3 weeks appears to have no antitumour activity in patients with cisplatin-refractory germ cell cancer and, thus, further investigation in this disease is not justified

    Isotopic techniques to measure N2O, N2 and their sources

    Get PDF
    GHG emissions are usually the result of several simultaneous processes. Furthermore, some gases such as N2 are very difficult to quantify and require special techniques. Therefore, in this chapter, the focus is on stable isotope methods. Both natural abundance techniques and enrichment techniques are used. Especially in the last decade, a number of methodological advances have been made. Thus, this chapter provides an overview and description of a number of current state-of-theart techniques, especially techniques using the stable isotope 15N. Basic principles and recent advances of the 15N gas flux method are presented to quantify N2 fluxes, but also the latest isotopologue and isotopomer methods to identify pathways for N2O production. The second part of the chapter is devoted to 15N tracing techniques, the theoretical background and recent methodological advances. A range of different methods is presented from analytical to numerical tools to identify and quantify pathway-specific N2O emissions. While this chapter is chiefly concerned with gaseous N emissions, a lot of the techniques can also be applied to other gases such as methane (CH4), as outlined in Sect. 5.3

    Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    Get PDF
    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N runoff per year (∼47 Tg) to biologically unavailable N 2 gas and return it to the atmosphere. At present, riverine N 2 production is conceptualized and modelled as denitrification. Anaerobic ammonium oxidation, known as anammox, is an alternative pathway of N 2 production important in marine environments, but its contribution to riverine N 2 production is not well understood. Here we use in situ and laboratory measurements of anammox activity using 15 N tracers and molecular analyses of microbial communities to evaluate anammox in clay-, sand-and chalk-dominated river beds in the Hampshire Avon catchment, UK during summer 2013. Abundance of the hzo gene, which encodes an enzyme central to anammox metabolism, varied across the contrasting geologies. Anammox rates were similar across geologies but contributed different proportions of N 2 production because of variation in denitrification rates. In spite of requiring anoxic conditions, anammox, most likely coupled to partial nitrification, contributed up to 58% of in situ N 2 production in oxic, permeable riverbeds. In contrast, denitrification dominated in low-permeability clay-bed rivers, where anammox contributes roughly 7% to the production of N 2 gas. We conclude that anammox can represent an important nitrogen loss pathway in permeable river sediments

    Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging

    No full text
    Absorption (mu (a)) and reduced scattering (mu (s)') spectra of turbid media were quanti fied with a noncontact imaging approach based on a Fourier-transform interferometric imaging system (FTIIS). The FTIIS was used to collect hyperspectral images of the steady-state diffuse reflectance from turbid media. Spatially resolved reflectance data from Monte Carlo simulations were fitted to the recorded hyperspectral images to quantify mu (a) and mu (s)' spectra in the 550-850-nm region. A simple and effective calibration approach was introduced to account for the instrument response. With reflectance data that were close to and far from the source (0.5-6.5 mm), mu (a) and mu (')(s) of homogeneous, semi-infinite turbid phantoms with optical property ranges comparable with those of tissues were determined with an accuracy of +/-7% and +/-3%, respectively. Prediction accuracy for mu (a) and mu (s)' degraded to +/-12% and +/-4%, respectively, when only reflectance data close to the source (0.5-2.5 mm) were used. Results indicate that reflectance data close to and far hom the source are necessary for optimal quantification of mu (a) and mu (s)'. The spectral properties of mu (a) and mu (s)' values were used to determine the concentrations of absorbers and scatterers, respectively. Absorber and scatterer concentrations of two-chromophore turbid media were determined with an accuracy of +/-5% and +/-3%, respectively. (C) 2000 Optical Society of America OCIS codes: 170.0110, 170.7050, 170.6510, 070.2590, 120.3180
    corecore