42 research outputs found
Feldversuche zur verlustmindernden Wirkung von N-Stabilisatoren hinsichtlich Lachgas-Emissionen nach Harnstoff-Düngung zu Winterraps
Im vorliegenden Freilandversuch wurde die N2O-Emissionsdynamik bezüglich des Einsatzes eines Nitrifikationsinhibitors (NI) im Zusammenhang mit Harnstoffdüngung zu Winterraps unter praxisrelevanten Anbaubedingungen und unter besonderer Berücksichtigung der vegetativen- und reproduktiven- sowie Ernte und Nacherntephase über zwei Vegetationsperioden hinweg untersucht. Zentrales Ziel der Untersuchung war
die Quantifizierung des N2O-Minderungspotentials durch NI-Einsatz bei Winterraps.
Der N2O-Verlust nach HS-Düngung zu Winterraps lag mit max. 1,36 kg N / ha (0,44 %-Dünger-N) unter dem IPCC-Faktor von 1,0 %. Die Verwendung eines NI konnte die N2O-Verluste im Wirkungszeitraum bis zur Blüte deutlich verringern (81 bis 97%). Emissionen im Erntezeitraum (Jul bis Sep) basieren nicht direkt auf Dünger-Nmin, sondern dem Eintrag frischer Biomasse, welche bei Düngung systembedingt erhöht ist und nicht durch den frühjährlichen Einsatz eines NI minimiert werden kann. Die Gesamt-N2O-Minderungsbilanz bei Einsatz eines NI hängt maßgeblich vom N2O-Verlustpotential während der Düngungs- und Wachstumsphase sowie der (NI-unabhängigen) Stärke der N2O-Verluste während der Ernte- und Nacherntephase ab
Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation
Expanding far beyond traditional applications in optical interconnects at
telecommunications wavelengths, the silicon nanophotonic integrated circuit
platform has recently proven its merits for working with mid-infrared (mid-IR)
optical signals in the 2-8 {\mu}m range. Mid-IR integrated optical systems are
capable of addressing applications including industrial process and
environmental monitoring, threat detection, medical diagnostics, and free-space
communication. Rapid progress has led to the demonstration of various silicon
components designed for the on-chip processing of mid-IR signals, including
waveguides, vertical grating couplers, microcavities, and electrooptic
modulators. Even so, a notable obstacle to the continued advancement of
chip-scale systems is imposed by the narrow-bandgap semiconductors, such as
InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical
currents. The cryogenic or multi-stage thermo-electric cooling required to
suppress dark current noise, exponentially dependent upon the ratio Eg/kT, can
limit the development of small, low-power, and low-cost integrated optical
systems for the mid-IR. However, if the mid-IR optical signal could be
spectrally translated to shorter wavelengths, for example within the
near-infrared telecom band, photodetectors using wider bandgap semiconductors
such as InGaAs or Ge could be used to eliminate prohibitive cooling
requirements. Moreover, telecom band detectors typically perform with higher
detectivity and faster response times when compared with their mid-IR
counterparts. Here we address these challenges with a silicon-integrated
approach to spectral translation, by employing efficient four-wave mixing (FWM)
and large optical parametric gain in silicon nanophotonic wires
Irinotecan in patients with relapsed or cisplatin-refractory germ cell cancer: a phase II study of the German Testicular Cancer Study Group
Despite generally high cure rates in patients with metastatic germ cell cancer, patients with progressive disease on first-line cisplatin-based chemotherapy or with relapsed disease following high-dose salvage therapy exhibit a very poor prognosis. Irinotecan has shown antitumour activity in human testicular tumour xenografts in nude mice. We have performed a phase II study examining the single agent activity of irinotecan in patients with metastatic relapsed or cisplatin-refractory germ cell cancer. Refractory disease was defined as progression or relapse within 4 weeks after cisplatin-based chemotherapy or relapse after salvage high-dose chemotherapy with autologous stem cell support. Irinotecan was administered at a dose of 300 (−350) mg m−2 every 3 weeks. Response was evaluated every 4 weeks. Fifteen patients have been enrolled. Median age was 35 (19–53) years. Primary tumour localisation was gonadal/mediastinal in 12/3 patients. Patients had been pretreated with a median of six (4–12) cisplatin-containing cycles and 13 out of 15 patients had previously failed high-dose chemotherapy with blood stem cell support. Median number of irinotecan applications was two (1–3). Fourteen patients are assessable for response and all for toxicity. In one patient, no adequate response evaluation was performed. Toxicity was generally acceptable and consisted mainly of haematological side effects with common toxicity criteria 3° anaemia (two patients), common toxicity criteria 3° leukocytopenia (one patient) and common toxicity criteria 3° thrombocytopenia (three patients). Common toxicity criteria 3/4° non-haematological toxicity occurred in five patients (33%): 1×diarrhoea, 2×alopecia, 1×fever and in one patient worsening of pre-existing peripheral polyneuropathy from 1° to 4°. No response was observed to irinotecan therapy. Currently, 13 patients have died of the disease and two patients are alive with the disease. The patients included in our study exhibit similar prognostic characteristics as patients treated in previous trials evaluating new drugs in this setting. Irinotecan at a dose of 300–350 mg m−2 every 3 weeks appears to have no antitumour activity in patients with cisplatin-refractory germ cell cancer and, thus, further investigation in this disease is not justified
Isotopic techniques to measure N2O, N2 and their sources
GHG emissions are usually the result of several simultaneous processes. Furthermore, some gases such as N2 are very difficult to quantify and require special techniques. Therefore, in this chapter, the focus is on stable isotope methods. Both natural abundance techniques and enrichment techniques are used. Especially in the last decade, a number of methodological advances have been made. Thus, this chapter provides an overview and description of a number of current state-of-theart techniques, especially techniques using the stable isotope 15N. Basic principles and recent advances of the 15N gas flux method are presented to quantify N2 fluxes, but also the latest isotopologue and isotopomer methods to identify pathways for N2O production. The second part of the chapter is devoted to 15N tracing techniques, the theoretical background and recent methodological advances. A range of different methods is presented from analytical to numerical tools to identify and quantify pathway-specific N2O emissions. While this chapter is chiefly concerned with gaseous N emissions, a lot of the techniques can also be applied to other gases such as methane (CH4), as outlined in Sect. 5.3
Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology
Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N runoff per year (∼47 Tg) to biologically unavailable N 2 gas and return it to the atmosphere. At present, riverine N 2 production is conceptualized and modelled as denitrification. Anaerobic ammonium oxidation, known as anammox, is an alternative pathway of N 2 production important in marine environments, but its contribution to riverine N 2 production is not well understood. Here we use in situ and laboratory measurements of anammox activity using 15 N tracers and molecular analyses of microbial communities to evaluate anammox in clay-, sand-and chalk-dominated river beds in the Hampshire Avon catchment, UK during summer 2013. Abundance of the hzo gene, which encodes an enzyme central to anammox metabolism, varied across the contrasting geologies. Anammox rates were similar across geologies but contributed different proportions of N 2 production because of variation in denitrification rates. In spite of requiring anoxic conditions, anammox, most likely coupled to partial nitrification, contributed up to 58% of in situ N 2 production in oxic, permeable riverbeds. In contrast, denitrification dominated in low-permeability clay-bed rivers, where anammox contributes roughly 7% to the production of N 2 gas. We conclude that anammox can represent an important nitrogen loss pathway in permeable river sediments
Recommended from our members
Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance.
Noncontact, frequency-domain measurements of diffusely reflected light are used to quantify optical properties of two-layer tissuelike turbid media. The irradiating source is a sinusoidal intensity-modulated plane wave, with modulation frequencies ranging from 10 to 1500 MHz. Frequency-dependent phase and amplitude of diffusely reflected photon density waves are simultaneously fitted to a diffusion-based two-layer model to quantify absorption (mu(a)) and reduced scattering (mu(s)') parameters of each layer as well as the upper-layer thickness (l). Study results indicate that the optical properties of two-layer media can be determined with a percent accuracy of the order of +/-9% and +/-5% for mu(a) and mu(s)', respectively. The accuracy of upper-layer thickness (l) estimation is as good as +/-6% when optical properties of upper and lower layers are known. Optical property and layer thickness prediction accuracy degrade significantly when more than three free parameters are extracted from data fits. Problems with convergence are encountered when all five free parameters (mu(a) and mu(s)' of upper and lower layers and thickness l) must be deduced
Recommended from our members
Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions.
The basic principles of a non-contact, near-infrared technique for the mapping of layered tissues are discussed theoretically and verified experimentally. The propagation properties of diffuse photon-density waves in tissues depend on the optical properties of the tissue. When a layered medium is irradiated by amplitude modulated light, the difference in optical properties between the layers is evident in the phase and amplitude of the diffuse reflection coefficient, which is a result of the interference of the partial waves propagating in the different layers. Thus, diffuse photon-density waves are applicable to the analysis of the structure of layered tissue. The probing depth is determined by the modulation frequency of the incident light. For modulation frequencies between several hundred megahertz and a few gigahertz, this allows us to analyse the properties of muscle tissue of up to 4-8 mm below the surface. Experimental results based on chicken breast muscle are given. As an example, the technique might be of use for evaluating the depth of necrosis and the blood volume fraction in deep burns
Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging
Absorption (mu (a)) and reduced scattering (mu (s)') spectra of turbid media were quanti fied with a noncontact imaging approach based on a Fourier-transform interferometric imaging system (FTIIS). The FTIIS was used to collect hyperspectral images of the steady-state diffuse reflectance from turbid media. Spatially resolved reflectance data from Monte Carlo simulations were fitted to the recorded hyperspectral images to quantify mu (a) and mu (s)' spectra in the 550-850-nm region. A simple and effective calibration approach was introduced to account for the instrument response. With reflectance data that were close to and far from the source (0.5-6.5 mm), mu (a) and mu (')(s) of homogeneous, semi-infinite turbid phantoms with optical property ranges comparable with those of tissues were determined with an accuracy of +/-7% and +/-3%, respectively. Prediction accuracy for mu (a) and mu (s)' degraded to +/-12% and +/-4%, respectively, when only reflectance data close to the source (0.5-2.5 mm) were used. Results indicate that reflectance data close to and far hom the source are necessary for optimal quantification of mu (a) and mu (s)'. The spectral properties of mu (a) and mu (s)' values were used to determine the concentrations of absorbers and scatterers, respectively. Absorber and scatterer concentrations of two-chromophore turbid media were determined with an accuracy of +/-5% and +/-3%, respectively. (C) 2000 Optical Society of America OCIS codes: 170.0110, 170.7050, 170.6510, 070.2590, 120.3180
Recommended from our members
Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging.
Absorption (mu(a)) and reduced scattering (mu(s)') spectra of turbid media were quantified with a noncontact imaging approach based on a Fourier-transform interferometric imaging system (FTIIS). The FTIIS was used to collect hyperspectral images of the steady-state diffuse reflectance from turbid media. Spatially resolved reflectance data from Monte Carlo simulations were fitted to the recorded hyperspectral images to quantify mu(a) and mu(s)' spectra in the 550-850-nm region. A simple and effective calibration approach was introduced to account for the instrument response. With reflectance data that were close to and far from the source (0.5-6.5 mm), mu(a) and mu(s)' of homogeneous, semi-infinite turbid phantoms with optical property ranges comparable with those of tissues were determined with an accuracy of +/-7% and +/-3%, respectively. Prediction accuracy for mu(a) and mu(s)' degraded to +/-12% and +/-4%, respectively, when only reflectance data close to the source (0.5-2.5 mm) were used. Results indicate that reflectance data close to and far from the source are necessary for optimal quantification of mu(a) and mu(s)'. The spectral properties of mu(a) and mu(s)' values were used to determine the concentrations of absorbers and scatterers, respectively. Absorber and scatterer concentrations of two-chromophore turbid media were determined with an accuracy of +/-5% and +/-3%, respectively