29 research outputs found
Utilization of passive sonic telemetry as indicators of movement and nesting of the Northern Diamondback Terrapin (Malaclemys terrapin terrapin)
Numerous anthropogenic factors pose serious threats to estuarine ecosystems and the organisms inhabiting them. Bulkheading (i.e., construction of shoreline walls), dredging, boating, shoreline development, over-harvesting, and pollution are some of the major human impacts to estuaries in North America. The diamondback terrapin (Malaclemys terrapin) is an ideal species for
determining the effects of human impacts to estuarine wildlife, because their habitat use and behavior uniquely utilize both land and aquatic habitats that comprise estuaries. The objective of this study is to determine the home range and nest site selection of diamondback terrapins in relation to anthropogenic impacts in Barnegat Bay Estuary, New Jersey. We will use passive sonic telemetry technology and multiple Submersible Underwater Receivers (SURs) to remotely track free-ranging terrapins throughout the Bay. We will position SURs in arrays throughout areas of the Bay where we have marked terrapins over the last three years to monitor the
movements of individual terrapins. Fifteen terrapins will be outfitted with sonic transmitters per site, which will send signals to the SUR when terrapins are within range. Frequency, date, and
time of signal reception will be logged remotely by each SUR. From these data we will
determine the individual terrapin whose signal was received, and movements of individuals throughout the monitored areas. Gravid (i.e., egg-bearing) females will be closely monitored to determine the nest site(s) used. Reproductive success of nests will be determined for each monitored female. Wherever possible we will determine the cause(s) of nest failure. Our study will be critical in determining the direct and indirect effects of anthropogenic impacts to terrapins
in areas of known high terrapin densities. These findings will aid in management decisions regarding both aquatic (e.g., boat) and land (e.g., beach) uses in relation to ensuring the viability of wildlife resources within the Barnegat Bay Estuary
Investigating differences in population recovery rates of two sympatrically nesting sea turtle species
This is the final version. Available on open access from Wiley via the DOI in this recordData Availability Statement:
Data are available from corresponding author upon reasonable request.Estimating lifeâhistory traits and understanding their variation underpins the management of longâlived, migratory animals, while knowledge of recovery dynamics can inform the management of conservationâdependent species. Using a combination of nest counts and individualâbased lifeâhistory data collected since 1993, we explore the drivers underlying contrasting population recovery rates of sympatrically nesting loggerhead (Caretta caretta) and green (Chelonia mydas) turtles in North Cyprus. We found that nest counts of loggerhead and green turtles from 28 beaches across the island increased by 46% and 162%, respectively over the past 27 years. A Bayesian stateâspace model revealed that, at our individualâbased monitoring site, nesting of green turtles increased annually at four times the rate of that of loggerhead turtles. Furthermore, we found that loggerhead turtles nesting at the individualâbased monitoring site had stable reproductive parameters and average adult survival for the species and are the smallest breeding adults globally. Based on results from multiple matrix model scenarios, we propose that higher mortality rates of individuals in all age classes (likely driven by differences in life history and interaction with fisheries), rather than low reproductive output, are impeding the recovery of this species. While the increase in green turtles is encouraging, the Mediterranean population is estimated to have around 3,400 adults and is restricted to the Eastern Basin. The recovery of loggerhead turtles is likely to be compromised until mortality rates in the region are adequately quantified and mitigated. As survival of immature individuals is a powerful driver for sea turtle population numbers, additional efforts should target management at pelagic and neritic foraging areas. Understanding threats faced by immature life stages is crucial to accurately parameterise population models and to target conservation actions for longâlived marine vertebrates
Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus
This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pone.0144846All dLGN cell co-ordinates, V1 injection sites, dLGN boundary coordinates, experimental protocols and analysis scripts are available for download from figshare at https://figshare.com/s/36c6d937b1844eec80a1.The mouse dorsal lateral geniculate nucleus (dLGN) is an intermediary between retina and primary visual cortex (V1). Recent investigations are beginning to reveal regional complexity in mouse dLGN. Using local injections of retrograde tracers into V1 of adult and neonatal mice, we examined the developing organisation of geniculate projection columns: the population of dLGN-V1 projection neurons that converge in cortex. Serial sectioning of the dLGN enabled the distribution of labelled projection neurons to be reconstructed and collated within a common standardised space. This enabled us to determine: the organisation of cells within the dLGN-V1 projection columns; their internal organisation (topology); and their order relative to V1 (topography). Here, we report parameters of projection columns that are highly variable in young animals and refined in the adult, exhibiting profiles consistent with shell and core zones of the dLGN. Additionally, such profiles are disrupted in adult animals with reduced correlated spontaneous activity during development. Assessing the variability between groups with partial least squares regression suggests that 4?6 cryptic lamina may exist along the length of the projection column. Our findings further spotlight the diversity of the mouse dLGN?an increasingly important model system for understanding the pre-cortical organisation and processing of visual information. Furthermore, our approach of using standardised spaces and pooling information across many animals will enhance future functional studies of the dLGN.Funding was provided by a Wellcome Trust grant jointly awarded to IDT and SJE (083205, www.wellcome.ac.uk), and by MRC PhD Studentships awarded to MNL and ACH (http://www.mrc.ac.uk/)
Global research priorities for sea turtles : informing management and conservation in the 21st century
Over the past 3 decades, the status of sea turtles and the need for their protection to aid population recovery have increasingly captured the interest of government agencies, non-governmental organisations (NGOs) and the general public worldwide. This interest has been matched by increased research attention, focusing on a wide variety of topics relating to sea turtle biology and ecology, together with the interrelations of sea turtles with the physical and natural environments. Although sea turtles have been better studied than most other marine fauna, management actions and their evaluation are often hindered by the lack of data on turtle biology, human–turtle interactions, turtle population status and threats. In an effort to inform effective sea turtle conservation a list of priority research questions was assembled based on the opinions of 35 sea turtle researchers from 13 nations working in fields related to turtle biology and/or conservation. The combined experience of the contributing researchers spanned the globe as well as many relevant disciplines involved in conservation research. An initial list of more than 200 questions gathered from respondents was condensed into 20 metaquestions and classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies
Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Summary progress report, 1 October 1977-30 September 1980
Biophysical-behavioral-ecological models have been completed to explain the behavioral thermoregulation of largemouth bass (Micropterus salmoides) and turtles (Chrysemys scripta). Steady state and time dependent mathematical models accurately predict the body temperatures of largemouth bass. Field experiments using multichannel radio transmitters have provided temperatures of several body compartments of free ranging bass in their natural habitat. Initial studies have been completed to describe the behavioral thermoregulation of bass in a reactor cooling reservoir. Energy budgets, fundamental climate spaces, and realized climate spaces have been completed for the turtle, C. scripta. We have described the behavioral thermoregulation of C. scripta in Par Pond, S.C. and have measured its movements, home ranges and population levels in heated and unheated arms of the reservoir. Operative environmental temperature is a good predictor of the basking behavior of this turtle. A new synthesis explained the evolution of thermoregulatory strategies among animals. Laboratory experiments clarified the effects of movement, diving and temperature on the blood flow of alligators. Other experiments defined the role of boundary layers in controlling the evaporation of water from the surfaces of turtles and alligators in still and moving air. Nutritional status may be an important factor affecting the thermoregulatory behavior of turtles
Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, 1 October 1979-30 September 1980
Fundamental and realized climate spaces were calculated for the turtle Chrysemys scripta. These allow predictions about the effect of microclimate and thermal effluents on the behavior of these animals to be made. A conceptual model to define the biophysical-behavioral thermoregulatory mechanisms employed by this turtle is being finalized. Operative environmental temperature (T/sub e/) is a good predictor of the basking behavior of turtles. T/sub e/ is positively related to visible and thermal radiation and air temperature. Turtles generally do not bask until T/sub e/ exceeds 28/sup 0/C, thus implicating thermoregulation as a major factor in determining the basking behavior of C. scripta. Water temperature was very important in determining the distribution of largemouth bass, Micropterus salmoides, in a South Carolina reservoir receiving thermal effluent from a nuclear reactor. Bass were restricted in movement by lethal water temperatures, selecting temperatures close to 30/sup 0/C and avoiding temperatures above 31/sup 0/C. Under normal, unheated conditions, bass dispersed throughout the reservoir. During reactor operation, hot water at temperatures lethal to fish (approx. 55/sup 0/C), forced bass to retreat to refuges in two coves and a deep spring. Distribution of bass varied seasonally. Multichannel radio transmitters were surgically implanted in free ranging fish, permitting the telemetry of temperatures from five parts of the body and from surrounding water. In general, body temperatures followed water temperatures closely, but rapidly changing temperatures produced lags between body temperatures and water of as much as 3.5/sup 0/C. (ERB
Recommended from our members
Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms
The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During this project we conducted studies: to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina; to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field; to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also completed our research on the three-dimensional bioenergetic climate space for freshwater turtles
Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, 1 October 1978-30 September 1979
A time dependent mathematical model accurately predicts heart, brain, and gut temperatures of largemouth bass. Body diameter, insulation thickness, and tissue thermal conductivity are controlling variables in the transfer of heat between a fish and water. Fish metabolic rate and water velocity across fish surfaces do not appreciably affect heat transfer rates. Multichannel temperature transmitters telemeter body temperatures of free swimming bass in Pond C on the Savannah River Plant while the behavior of those fish and other bass is recorded by an observer. Field studies of the home ranges and movements of turtles in Par Pond on the Savannah River Plant are completed. We have recorded the movements of 30 individuals fitted with radio transmitters. Distinct differences are apparent in the behavior of turtles in areas affected by heated effluents as compared to those in control areas. Calculations and theoretical analysis of the transient energy exchange of turtles are continuing. Laboratory experiments using /sup 133/Xe indicate that blood flow in the muscles and skin of alligators increases 2 to 6 fold during movement. Relative variation is similar in magnitude to that seen in human muscle. Evaporative water loss from alligators decreases as body size increases. The ratios of respiratory to cutaneous water loss are 1.80 at 5/sup 0/C, 1.18 at 25/sup 0/C and 0.85 at 35/sup 0/C. Boundary layer resistances to evaporative water loss are 6 fold less than predicted by calculations of aerodynamic boundary layers. Body size is a primary factor in determining the thermoregulatory strategy that is to be used by a given animal.Operative environmental temperatures (T/sub e/) are as high as 60/sup 0/C for a turtle basking on a log in the sun. In a rainstorm T/sub e/ drops to 18/sup 0/C. Experiments to measure T/sub e/ for turtles in normal and thermally affected areas are now continuing on the Savannah River Plant. (ERB
Alien plant threatens Nile crocodile (Crocodylus niloticus) breeding in Lake St. Lucia, South Africa
We observed that the majority of Lake St. Lucia's nesting Nile crocodiles (Crocodylus niloticus) selected open, sunny, sandy areas in which to deposit their eggs. Nests were only found in shaded sites in the Mpate River breeding area and these nests were shaded primarily by an alien plant. Chromolaena odorata. Soil temperatures of shaded sites at 25-cm depth, were on average 5.0-6.0°C cooler than in sunny sites at the same depth. They were well below the pivotal temperature for nests of St. Lucia's Nile crocodiles, i.e. they probably produced a female-biased sex ratio, and may have prevented embryonic development altogether. Many females abandoned nesting sites when they encountered the fibrous root mats of Chromolaena odorata while digging egg chambers. When additional nesting sites were experimentally created, the percent of sites utilized increased, indicating that suitable nesting sites were in short supply. This alien plant is posing a very serious threat to the continued survival of the Nile crocodile in Greater St. Lucia Wetland Park, and unless immediate action is taken, a female-biased sex ratio will result in eventual extirpation of the species from this recently acclaimed Word Heritage Site. © 2001 Elsevier Science Ltd.Articl