130 research outputs found

    Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): A report from the therapeutic advances in childhood leukemia (TACL) consortium

    Full text link
    Background Outcomes remain poor for children after relapse of acute lymphoblastic leukemia (ALL), especially after early marrow relapse. Bortezomib is a proteasome inhibitor with in vitro synergy with corticosteroids and clinical activity in human lymphoid malignancies. Procedure This is a Phase I study of escalating doses bortezomib administered days 1, 4, 8, and 11, added to 4-drug induction chemotherapy with vincristine, dexamethasone, pegylated L -asparaginase, and doxorubicin (VXLD) in children with relapsed ALL. Results Ten patients were enrolled, five in first marrow relapse, and five in second relapse. Four patients were enrolled at dose level 1 (bortezomib 1 mg/m 2 ). One patient was not evaluable for toxicity because of omitted dexamethasone doses. No dose-limiting toxicity (DLT) was observed. Six patients were enrolled at dose level 2 (bortezomib 1.3 mg/m 2 ). One patient had dose-limiting hypophosphatemia and rhabdomyolysis after 1 dose of bortezomib, and died from a diffuse zygomyces infection on day 17. Five additional patients were enrolled with no subsequent DLTs. As planned, no further dose escalation was pursued. The regimen had predictable toxicity related to the chemotherapy drugs. Two patients had mild peripheral neuropathy (grades 1 and 2). Six of nine evaluable patients (67%) achieved a complete response (CR), and one had a bone marrow CR with persistent central nervous system leukemia. Conclusions The combination of bortezomib (1.3 mg/m 2 ) with VXLD is active with acceptable toxicity in pretreated pediatric patients with relapsed ALL. We are expanding the 1.3 mg/m 2 cohort for a phase II estimate of response. Study registered at ClinicalTrials.gov ( http://clinicaltrials.gov/ct2/show/NCT00440726 ). Pediatr Blood Cancer 2010;55:254–259. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77437/1/22456_ftp.pd

    Thyroid and hepatic function after high-dose 131 I-metaiodobenzylguanidine ( 131 I-MIBG) therapy for neuroblastoma.

    Full text link
    Background 131 I-Metaiodobenzylguanidine ( 131 I-MIBG) provides targeted radiotherapy for children with neuroblastoma, a malignancy of the sympathetic nervous system. Dissociated radioactive iodide may concentrate in the thyroid, and 131 I-MIBG is concentrated in the liver after 131 I-MIBG therapy. The aim of our study was to analyze the effects of 131 I-MIBG therapy on thyroid and liver function. Procedure Pre- and post-therapy thyroid and liver functions were reviewed in a total of 194 neuroblastoma patients treated with 131 I-MIBG therapy. The cumulative incidence over time was estimated for both thyroid and liver toxicities. The relationship to cumulative dose/kg, number of treatments, time from treatment to follow-up, sex, and patient age was examined. Results In patients who presented with Grade 0 or 1 thyroid toxicity at baseline, 12 ± 4% experienced onset of or worsening to Grade 2 hypothyroidism and one patient developed Grade 2 hyperthyroidism by 2 years after 131 I-MIBG therapy. At 2 years post- 131 I-MIBG therapy, 76 ± 4% patients experienced onset or worsening of hepatic toxicity to any grade, and 23 ± 5% experienced onset of or worsening to Grade 3 or 4 liver toxicity. Liver toxicity was usually transient asymptomatic transaminase elevation, frequently confounded by disease progression and other therapies. Conclusion The prophylactic regimen of potassium iodide and potassium perchlorate with 131 I-MIBG therapy resulted in a low rate of significant hypothyroidism. Liver abnormalities following 131 I-MIBG therapy were primarily reversible and did not result in late toxicity. 131 I-MIBG therapy is a promising treatment for children with relapsed neuroblastoma with a relatively low rate of symptomatic thyroid or hepatic dysfunction. Pediatr Blood Cancer 2011;56:191–201. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78497/1/22767_ftp.pd

    Nuclear factor IA is expressed in astrocytomas and is associated with improved survival

    Get PDF
    Nuclear factor IA (NFIA) is a transcription factor that specifies glial cell identity and promotes astrocyte differentiation during embryonic development. Its expression and function in gliomas are not known. Here, we examined NFIA protein expression in gliomas and its association with clinical outcome in pediatric malignant astrocytomas. We analyzed expression of NFIA by immunohistochemistry in 88 existing glioma specimens from Childrens Hospital Los Angeles and the University of Southern California. Association between NFIA expression and progression-free survival (PFS) was examined in high-grade astrocytomas for which clinical data were available (n = 23, all children). NFIA was highly expressed in astrocytomas of all grades, but only in a minority of cells in oligodendroglial tumors. NFIA was expressed on a higher percentage of tumor cells in low-grade astrocytomas (91 ± 5% and 77 ± 14% in World Health Organization [WHO] I and II, respectively) compared with high-grade astrocytomas (48 ± 18% and 37 ± 16% in WHO III and IV, respectively; P < .001, low- vs high-grade astrocytomas). There was a significant association between NFIA expression and PFS in children with astrocytoma WHO grade III or IV (Cox regression P = .019; logrank trend test for NFIA tertiles P = .0040 and NFIA quartiles P = .014). The association was not consistently significant in this small series of patients after adjustment was made for WHO grade III or IV. This is the first study to demonstrate expression of NFIA protein in astrocytomas and its association with grades of astrocytoma and PFS, suggesting that NFIA may play a role in astrocytoma biology

    Probable fatal drug interaction between intravenous fenretinide, ceftriaxone, and acetaminophen: a case report from a New Approaches to Neuroblastoma (NANT) Phase I study

    Get PDF
    Background: Patients with relapsed/refractory stage 4 high-risk neuroblastoma were enrolled on a phase I study (NANT2004-03) of intravenous fenretinide emulsion. Pharmacokinetic samples were collected during and after the infusion, and the levels were measured using an HPLC system. A likely case of a fatal drug interaction between fenretinide, ceftriaxone, and acetaminophen is described, including the pharmacokinetics of fenretinide, laboratory data, and post-mortem autopsy in a pediatric neuroblastoma patient treated on this study. Case presentation: On Day 4 of a scheduled 5-day-infusion of intravenous fenretinide, the patient developed a fever, acetaminophen was started, ceftriaxone initiated for possible bacteremia, and fenretinide level doubled from 56 to 110 μM. Over the next three days, although blood cultures remained negative, the patient’s condition deteriorated rapidly. Acute liver failure was diagnosed on Day 7, and the patient expired on Day 20 of fulminant hepatic failure with associated renal, cardiac, and hemorrhagic/coagulation toxicities. Autopsy showed extensive hemorrhagic necrosis of the liver, marked bile duct proliferation, and abundant hemosiderin, consistent with cholestasis and drug toxicity. Conclusions: After extensive review of patient data, the clinical course, and the literature, we conclude that observed hepatic toxicity was likely due to a drug interaction between fenretinide and concomitant ceftriaxone and acetaminophen. None of the other 16 patients treated on this study experienced significant hepatic toxicity. Although the prevalence of cholestasis with ceftriaxone usage is relatively high, the potential drug interaction with these concomitant medications has not been previously reported. Concomitant use of fenretinide, ceftriaxone, and acetaminophen should be avoided

    Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia

    Get PDF
    Although inotuzumab ozogamicin (InO) is recognized as an effective agent in relapsed acute lymphoblastic leukemia (ALL) in adults, data on safety and efficacy in pediatric patients are scarce. We report the use of InO in 51 children with relapsed/ refractory ALL treated in the compassionate use program. In this heavily pretreated cohort, complete remission was achieved in 67% of patients with overt marrow disease. The majority (71%) of responders were negative for minimal residual disease. Responses were observed irrespective of cytogenetic subtype or number or type of prior treatment regimens. InO was welltolerated; grade 3 hepatic transaminitis or hyperbilirubinemia were noted in 6 (12%) and grade 3/4 infections in 11 (22%) patients. No patient developed sinusoidal obstruction syndrome (SOS) during InO therapy; however, 11 of 21 (52%) patients who underwent hematopoietic stem cell transplantation (HSCT) following InO developed SOS. Downregulation of surface CD22 was detected as a possible escape mechanism in three patients who developed a subsequent relapse after InO. We conclude that InO is a well-tolerated, effective therapy for children with relapsed ALL and prospective studies are warranted. Identification of risk factors for developing post-HSCT SOS and strategies to mitigate this risk are ongoing

    Contribution of the Neighborhood Environment and Obesity to Breast Cancer Survival: The California Breast Cancer Survivorship Consortium

    Full text link
    Little is known about neighborhood attributes that may influence opportunities for healthy eating and physical activity in relation to breast cancer mortality. We used data from the California Breast Cancer Survivorship Consortium and the California Neighborhoods Data System to examine the neighborhood environment, body mass index, and mortality after breast cancer. We studied 8,995 African American, Asian American, Latina, and non-Latina White women with breast cancer. Residential addresses were linked to the CNDS to characterize neighborhoods. We used multinomial logistic regression to evaluate the associations between neighborhood factors and obesity, and Cox proportional hazards regression to examine associations between neighborhood factors and mortality. For Latinas, obesity was associated with more neighborhood crowding (Quartile 4 (Q4) vs. Q1: Odds Ratio (OR)=3.24; 95% Confidence Interval (CI): 1.50-7.00); breast cancer-specific mortality was inversely associated with neighborhood businesses (Q4 vs. Q1: Hazard Ratio (HR)=0.46; 95% CI: 0.25-0.85) and positively associated with multi-family housing (Q3 vs. Q1: HR=1.98; 95% CI: 1.20-3.26). For non-Latina Whites, lower neighborhood socioeconomic status (SES) was associated with obesity (Quintile 1 (Q1) vs. Q5: OR=2.52; 95% CI: 1.31-4.84), breast cancer-specific (Q1 vs. Q5: HR=2.75; 95% CI: 1.47-5.12), and all-cause (Q1 vs. Q5: HR=1.75; 95% CI: 1.17-2.62) mortality. For Asian Americans, no associations were seen. For African Americans, lower neighborhood SES was associated with lower mortality in a nonlinear fashion. Attributes of the neighborhood environment were associated with obesity and mortality following breast cancer diagnosis, but these associations differed across racial/ethnic groups
    • …
    corecore